Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
FEBS J ; 288(4): 1163-1178, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32645249

RESUMO

UDP-glucuronic acid (UDP-GlcA) is a central precursor in sugar nucleotide biosynthesis and common substrate for C4-epimerases and decarboxylases releasing UDP-galacturonic acid (UDP-GalA) and UDP-pentose products, respectively. Despite the different reactions catalyzed, the enzymes are believed to share mechanistic analogy rooted in their joint membership to the short-chain dehydrogenase/reductase (SDR) protein superfamily: Oxidation at the substrate C4 by enzyme-bound NAD+ initiates the catalytic pathway. Here, we present mechanistic characterization of the C4-epimerization of UDP-GlcA, which in comparison with the corresponding decarboxylation has been largely unexplored. The UDP-GlcA 4-epimerase from Bacillus cereus functions as a homodimer and contains one NAD+ /subunit (kcat  = 0.25 ± 0.01 s-1 ). The epimerization of UDP-GlcA proceeds via hydride transfer from and to the substrate's C4 while retaining the enzyme-bound cofactor in its oxidized form (≥ 97%) at steady state and without trace of decarboxylation. The kcat for UDP-GlcA conversion shows a kinetic isotope effect of 2.0 (±0.1) derived from substrate deuteration at C4. The proposed enzymatic mechanism involves a transient UDP-4-keto-hexose-uronic acid intermediate whose formation is rate-limiting overall, and is governed by a conformational step before hydride abstraction from UDP-GlcA. Precise positioning of the substrate in a kinetically slow binding step may be important for the epimerase to establish stereo-electronic constraints in which decarboxylation of the labile ß-keto acid species is prevented effectively. Mutagenesis and pH studies implicate the conserved Tyr149 as the catalytic base for substrate oxidation and show its involvement in the substrate positioning step. Collectively, this study suggests that based on overall mechanistic analogy, stereo-electronic control may be a distinguishing feature of catalysis by SDR-type epimerases and decarboxylases active on UDP-GlcA.


Assuntos
Bacillus cereus/enzimologia , Proteínas de Bactérias/metabolismo , Racemases e Epimerases/metabolismo , Proteínas Recombinantes/metabolismo , Açúcares de Uridina Difosfato/metabolismo , Proteínas de Bactérias/genética , Biocatálise , Sequência de Carboidratos , Domínio Catalítico , Cromatografia Líquida de Alta Pressão , Escherichia coli/genética , Concentração de Íons de Hidrogênio , Cinética , Espectroscopia de Ressonância Magnética , Dados de Sequência Molecular , Proteínas Mutantes/metabolismo , Mutação , Racemases e Epimerases/genética , Proteínas Recombinantes/genética , Açúcares de Uridina Difosfato/química
2.
J Biotechnol ; 322: 74-78, 2020 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-32687957

RESUMO

Sugar nucleotide-dependent (Leloir) glycosyltransferases are powerful catalysts for glycoside synthesis. Their applicability can be limited due to elaborate production of enzyme preparations deployable in biocatalytic processes. Here, we show that efficient enzyme formulation promotes glycosyltransferases for the synthesis of the natural C-glycoside nothofagin. Adding Brij-35 detergent (1 %, w/v) during sonication of the E. coli BL21-Gold (DE3) expression strain, recovery of Oryza sativa C-glycosyltransferase was enhanced by ∼3-fold, partly due to the release of enzyme activity trapped in insoluble pellet. Freeze drying of the resulting cell-free extract (∼17 U ml-1) reduced the volume ∼20-fold and gave ∼55 mg solids ml-1 liquid processed, with 83 % retention of the original activity and a specific activity of 0.20 U mg-1 solids. The Glycine max sucrose synthase was processed analogously, giving a solid enzyme preparation of 0.28 U mg-1 in 63 % yield. Both enzyme formulations were stable for several weeks. The glycosyltransferase cascade reaction for 3'-ß-C-glucosylation of phloretin (60 mM; as inclusion complex with hydroxypropyl-ß-cyclodextrin) from UDP-glucose (generated in situ by sucrose synthase from 500 mM sucrose and 0.5 mM UDP) showed excellent performance metrics (≥ 98 % yield; 3.2 g l-1 h-1 space-time yield; ∼90 regeneration cycles for UDP). Collectively, our study demonstrates a facile procedure for solid glycosyltransferase formulations practically usable in glycoside synthesis.


Assuntos
Glicosídeos/biossíntese , Glicosiltransferases , Proteínas Recombinantes , Biocatálise , Biotecnologia , Chalconas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Glucosiltransferases/metabolismo , Glicosiltransferases/química , Glicosiltransferases/genética , Glicosiltransferases/isolamento & purificação , Glicosiltransferases/metabolismo , Redes e Vias Metabólicas , Oryza/enzimologia , Oryza/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Glycine max/enzimologia , Glycine max/genética
3.
Biotechnol Bioeng ; 117(8): 2377-2388, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32369187

RESUMO

Selective oxy-functionalization of nonactivated C-H bonds is a long-standing "dream reaction" of organic synthesis for which chemical methodology is not well developed. Mono-oxygenase enzymes are promising catalysts for such oxy-functionalization to establish. Limitation on their applicability arises from low reaction output. Here, we showed an integrated approach of process engineering to the intensification of the cytochrome P450 BM3-catalyzed hydroxylation of dodecanoic acid (C12:0). Using P450 BM3 together with glucose dehydrogenase for regeneration of nicotinamide adenine dinucleotide phosphate (NADPH), we compared soluble and co-immobilized enzymes in O2 -gassed and pH-controlled conversions at high final substrate concentrations (≥40mM). We identified the main engineering parameters of process output (i.e., O2 supply; mixing correlated with immobilized enzyme stability; foam control correlated with product isolation; substrate solubilization) and succeeded in disentangling their complex interrelationship for systematic process optimization. Running the reaction at O2 -limited conditions at up to 500-ml scale (10% dimethyl sulfoxide; silicone antifoam), we developed a substrate feeding strategy based on O2 feedback control. Thus, we achieved high reaction rates of 1.86g·L-1 ·hr-1 and near complete conversion (≥90%) of 80mM (16g/L) C12:0 with good selectivity (≤5% overoxidation). We showed that "uncoupled reaction" of the P450 BM3 (~95% utilization of NADPH and O2 not leading to hydroxylation) with the C12:0 hydroxylated product limited the process efficiency at high product concentration. Hydroxylated product (~7g; ≥92% purity) was recovered from 500ml reaction in 82% yield using ethyl-acetate extraction. Collectively, these results demonstrate key engineering parameters for the biocatalytic oxy-functionalization and show their integration into a coherent strategy for process intensification.


Assuntos
Proteínas de Bactérias/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Enzimas Imobilizadas/metabolismo , Ácidos Láuricos , NADPH-Ferri-Hemoproteína Redutase/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Biotecnologia , Sistema Enzimático do Citocromo P-450/química , Sistema Enzimático do Citocromo P-450/genética , Enzimas Imobilizadas/química , Enzimas Imobilizadas/genética , Ácidos Láuricos/análise , Ácidos Láuricos/química , Ácidos Láuricos/metabolismo , NADP/metabolismo , NADPH-Ferri-Hemoproteína Redutase/química , NADPH-Ferri-Hemoproteína Redutase/genética , Oxigênio/metabolismo , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
4.
Chemistry ; 26(68): 15910-15921, 2020 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-32449211

RESUMO

Oxyfunctionalization of fatty acids (FAs) is a key step in the design of novel synthetic pathways for biobased/biodegradable polymers, surfactants and fuels. Here, we show the isolation and characterization of a robust FA α-hydroxylase (P450Jα ) which catalyses the selective conversion of a broad range of FAs (C6:0-C16:0) and oleic acid (C18:1) with H2 O2 as oxidant. Under optimized reaction conditions P450Jα yields α-hydroxy acids all with >95 % regioselectivity, high specific activity (up to 15.2 U mg-1 ) and efficient coupling of oxidant to product (up to 85 %). Lauric acid (C12:0) turned out to be an excellent substrate with respect to productivity (TON=394 min-1 ). On preparative scale, conversion of C12:0 reached 83 % (0.9 g L-1 ) when supplementing H2 O2 in fed-batch mode. Under similar conditions P450Jα allowed further the first biocatalytic α-hydroxylation of oleic acid (88 % conversion on 100 mL scale) at high selectivity and in good yields (1.1 g L-1 ; 79 % isolated yield). Unexpectedly, P450Jα displayed also 1-alkene formation from shorter chain FAs (≤C10:0) showing that oxidative decarboxylation is more widely distributed across this enzyme family than reported previously.


Assuntos
Alcenos , Sistema Enzimático do Citocromo P-450 , Ácidos Graxos , Alcenos/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Ácidos Graxos/metabolismo , Hidroxilação , Especificidade por Substrato
5.
Biotechnol Adv ; 40: 107520, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31981600

RESUMO

Competitive sustainable production in industry demands new and better biocatalysts, optimized bioprocesses and cost-effective product recovery. Our review sheds light on the progress made for the individual steps towards these goals, starting with the discovery of new enzymes and their corresponding genes. The enzymes are subsequently engineered to improve their performance, combined in reaction cascades to expand the reaction scope and integrated in whole cells to provide an optimal environment for the bioconversion. Strain engineering using synthetic biology methods tunes the host for production, reaction design optimizes the reaction conditions and downstream processing ensures the efficient recovery of commercially viable products. Selected examples illustrate how modified enzymes can revolutionize future-oriented applications ranging from the bioproduction of bulk-, specialty- and fine chemicals, active pharmaceutical ingredients and carbohydrates, over the conversion of the greenhouse-gas CO2 into valuable products and biocontrol in agriculture, to recycling of synthetic polymers and recovery of precious metals.


Assuntos
Biologia Sintética , Biocatálise , Enzimas , Compostos Orgânicos
6.
J Biotechnol ; 324S: 100023, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-34154728

RESUMO

The Publisher regrets that this article is an accidental duplication of an article that has already been published in BIOTEC, 322C (2020) 74-78, https://doi.org/10.1016/j.jbiotec.2020.06.023. The duplicate article has therefore been withdrawn. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal.

7.
Nat Catal ; 2(12): 1115-1123, 2019 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-31844840

RESUMO

D-Apiose is a C-branched pentose sugar important for plant cell wall development. Its biosynthesis as UDP-D-apiose involves decarboxylation of the UDP-D-glucuronic acid precursor coupled to pyranosyl-to-furanosyl sugar ring contraction. This unusual multistep reaction is catalyzed within a single active site by UDP-D-apiose/UDP-D-xylose synthase (UAXS). Here, we decipher the UAXS catalytic mechanism based on crystal structures of the enzyme from Arabidopsis thaliana, molecular dynamics simulations expanded by QM/MM calculations, and mutational-mechanistic analyses. Our studies show how UAXS uniquely integrates a classical catalytic cycle of oxidation and reduction by a tightly bound nicotinamide coenzyme with retro-aldol/aldol chemistry for the sugar ring contraction. They further demonstrate that decarboxylation occurs only after the sugar ring opening and identify the thiol group of Cys100 in steering the sugar skeleton rearrangement by proton transfer to and from the C3'. The mechanistic features of UAXS highlight the evolutionary expansion of the basic catalytic apparatus of short-chain dehydrogenases/reductases for functional versatility in sugar biosynthesis.

8.
Beilstein J Nanotechnol ; 10: 2275-2279, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31807412

RESUMO

Surface modifications of nanoporous metals have become a highly attractive research field as they exhibit great potential for various applications, especially in biotechnology. Using self-assembled monolayers is one of the most promising approaches to modify a gold surface. However, only few techniques are capable of characterizing the formation of these monolayers on porous substrates. Here, we present a method to in situ monitor the adsorption and desorption of self-assembled monolayers on nanoporous gold by resistometry, using cysteine as example. During the adsorption an overall relative change in resistance of 18% is detected, which occurs in three distinct stages. First, the cysteine molecules are adsorbed on the outer surface. In the second stage, they are adsorbed on the internal surfaces and in the last stage the reordering accompanied by additional adsorption takes place. The successful binding of cysteine on the Au surface was confirmed by cyclic voltammetry, which showed a significant decrease of the double-layer capacitance. Also, the electrochemically controlled desorption of cysteine was monitored by concomitant in situ resistometry. From the desorption peak related to the (111) surface of the structure, which is associated with a resistance change of 4.8%, an initial surface coverage of 0.48 monolayers of cysteine could be estimated.

9.
Org Biomol Chem ; 16(43): 8030-8033, 2018 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-30334043

RESUMO

A three-step one-pot biocatalytic cascade was designed for the enantioselective formal α-amination of hexanoic acid to l-norleucine. Regioselective hydroxylation by P450CLA peroxygenase to 2-hydroxyhexanoic acid was followed by oxidation to the ketoacid by two stereocomplementary dehydrogenases. Combination with final stereoselective reductive amination by amino acid dehydrogenase furnished l-norleucine in >97% ee.


Assuntos
Biocatálise , Caproatos/química , Sistema Enzimático do Citocromo P-450/metabolismo , Norleucina/química , Aminação , Bactérias/enzimologia , Estereoisomerismo , Especificidade por Substrato
10.
Biotechnol Bioeng ; 115(10): 2416-2425, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30036448

RESUMO

Cytochrome P450 monooxygenases (P450s) promote hydroxylations in a broad variety of substrates. Their prowess in C-H bond functionalization renders P450s promising catalysts for organic synthesis. However, operating P450 reactions involve complex management of the main substrates, O2 and nicotinamide adenine dinucleotide phosphate (NAD(P)H) reducing equivalents against an overall background of low operational stability. Whole-cell biocatalysis, although often used, offers no general solution to these problems. Herein, we present the design of a tailor-made, self-sufficient, operationally stabilized and recyclable P450 catalyst on porous solid support. Using enzymes as fusion proteins with the polycationic binding module Zbasic2 , the P450s BM3 (from Bacillus megaterium) was coimmobilized with glucose dehydrogenase (type IV; from B. megaterium) on anionic sulfopropyl-activated carrier (ReliSorb SP). Immobilization via Zbasic2 enabled each enzyme to be loaded in controllable amount, thus maximizing the relative portion of the rate limiting P450 BM3 (up to 19.5 U/gcarrier ) in total enzyme immobilized. Using lauric acid as a representative P450 substrate that is poorly accessible to whole-cell catalysts, we demonstrate complete hydroxylation at low catalyst loading (≤0.1 mol%) and efficient electron coupling (74%), inside of the catalyst particle, to the regeneration of NADPH from glucose (27 cycles) was achieved. The immobilized P450 BM3 showed a total turnover number of ∼18,000, thus allowing active catalyst to be recycled up to 20 times. This study therefore supports the idea of practical heterogeneous catalysis by P450s systems immobilized on solid support.


Assuntos
Bacillus megaterium/enzimologia , Proteínas de Bactérias/química , Biocatálise , Sistema Enzimático do Citocromo P-450/química , Enzimas Imobilizadas/química , Glucose 1-Desidrogenase/química , NADPH-Ferri-Hemoproteína Redutase/química , NADP/química , Oxirredução
11.
Green Chem ; 20(8): 1754-1759, 2018 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-29780282

RESUMO

The utilization of gaseous carbon dioxide instead of bicarbonate would greatly facilitate process development for enzyme catalyzed carboxylations on a large scale. As a proof-of-concept, 1,3-dihydroxybenzene (resorcinol) was carboxylated in the ortho-position using pressurized CO2 (∼30-40 bar) catalyzed by ortho-benzoic acid decarboxylases with up to 68% conversion. Optimization studies revealed tight pH-control and enzyme stability as the most important determinants.

12.
Angew Chem Int Ed Engl ; 57(2): 427-430, 2018 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-29125663

RESUMO

The functionalization of bio-based chemicals is essential to allow valorization of natural carbon sources. An atom-efficient biocatalytic oxidative cascade was developed for the conversion of saturated fatty acids to α-ketoacids. Employment of P450 monooxygenase in the peroxygenase mode for regioselective α-hydroxylation of fatty acids combined with enantioselective oxidation by α-hydroxyacid oxidase(s) resulted in internal recycling of the oxidant H2 O2 , thus minimizing degradation of ketoacid product and maximizing biocatalyst lifetime. The O2 -dependent cascade relies on catalytic amounts of H2 O2 and releases water as sole by-product. Octanoic acid was converted under mild conditions in aqueous buffer to 2-oxooctanoic acid in a simultaneous one-pot two-step cascade in up to >99 % conversion without accumulation of hydroxyacid intermediate. Scale-up allowed isolation of final product in 91 % yield and the cascade was applied to fatty acids of various chain lengths (C6:0 to C10:0).

13.
Chemistry ; 23(71): 17981-17991, 2017 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-28990705

RESUMO

Aromatic hydroxylation of pseudocumene (1 a) and mesitylene (1 b) with P450 BM3 yields key phenolic building blocks for α-tocopherol synthesis. The P450 BM3 wild-type (WT) catalyzed selective aromatic hydroxylation of 1 b (94 %), whereas 1 a was hydroxylated to a large extent on benzylic positions (46-64 %). Site-saturation mutagenesis generated a new P450 BM3 mutant, herein named "variant M3" (R47S, Y51W, A330F, I401M), with significantly increased coupling efficiency (3- to 8-fold) and activity (75- to 230-fold) for the conversion of 1 a and 1 b. Additional π-π interactions introduced by mutation A330F improved not only productivity and coupling efficiency, but also selectivity toward aromatic hydroxylation of 1 a (61 to 75 %). Under continuous nicotinamide adenine dinucleotide phosphate recycling, the novel P450 BM3 variant M3 was able to produce the key tocopherol precursor trimethylhydroquinone (3 a; 35 % selectivity; 0.18 mg mL-1 ) directly from 1 a. In the case of 1 b, overoxidation leads to dearomatization and the formation of a valuable p-quinol synthon that can directly serve as an educt for the synthesis of 3 a. Detailed product pattern analysis, substrate docking, and mechanistic considerations support the hypothesis that 1 a binds in an inverted orientation in the active site of P450 BM3 WT, relative to P450 BM3 variant M3, to allow this change in chemoselectivity. This study provides an enzymatic route to key phenolic synthons for α-tocopherols and the first catalytic and mechanistic insights into direct aromatic hydroxylation and dearomatization of trimethylbenzenes with O2 .


Assuntos
Proteínas de Bactérias/metabolismo , Derivados de Benzeno/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , NADPH-Ferri-Hemoproteína Redutase/metabolismo , alfa-Tocoferol/metabolismo , Proteínas de Bactérias/genética , Derivados de Benzeno/química , Sítios de Ligação , Biocatálise , Domínio Catalítico , Sistema Enzimático do Citocromo P-450/genética , Cromatografia Gasosa-Espectrometria de Massas , Hidroxilação , Espectroscopia de Ressonância Magnética , Simulação de Acoplamento Molecular , Mutagênese Sítio-Dirigida , NADP/química , NADP/metabolismo , NADPH-Ferri-Hemoproteína Redutase/genética , Engenharia de Proteínas , Especificidade por Substrato , alfa-Tocoferol/química
14.
Angew Chem Int Ed Engl ; 54(30): 8819-22, 2015 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-26095212

RESUMO

The enzymatic oxidative decarboxylation of linear short-chain fatty acids (C4:0-C9:0) employing the P450 monooxygenase OleT, O2 as the oxidant, and NAD(P)H as the electron donor gave the corresponding terminal C3 to C8  alkenes with product titers of up to 0.93 g L(-1) and TTNs of >2000. Key to this process was the construction of an efficient electron-transfer chain employing putidaredoxin CamAB in combination with NAD(P)H recycling at the expense of glucose, formate, or phosphite. This system allows for the biocatalytic production of industrially important 1-alkenes, such as propene and 1-octene, from renewable resources for the first time.


Assuntos
Alcenos/metabolismo , Ácidos Graxos/metabolismo , Oxigenases/metabolismo , Descarboxilação , Ferredoxinas/metabolismo , NAD/metabolismo , Oxirredução , Oxigênio/metabolismo , Especificidade por Substrato
15.
Microb Cell Fact ; 14: 79, 2015 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-26062542

RESUMO

BACKGROUND: Microbes are extensively engineered to produce compounds of biotechnological or pharmaceutical interest. However, functional integration of synthetic pathways into the respective host cell metabolism and optimization of heterologous gene expression for achieving high product titers is still a challenging task. In this manuscript, we describe the optimization of a tetracistronic operon for the microbial production of the plant-derived phenylpropanoid p-coumaryl alcohol in Escherichia coli. RESULTS: Basis for the construction of a p-coumaryl alcohol producing strain was the development of Operon-PLICing as method for the rapid combinatorial assembly of synthetic operons. This method is based on the chemical cleavage reaction of phosphorothioate bonds in an iodine/ethanol solution to generate complementary, single-stranded overhangs and subsequent hybridization of multiple DNA-fragments. Furthermore, during the assembly of these DNA-fragments, Operon-PLICing offers the opportunity for balancing gene expression of all pathway genes on the level of translation for maximizing product titers by varying the spacing between the Shine-Dalgarno sequence and START codon. With Operon-PLICing, 81 different clones, each one carrying a different p-coumaryl alcohol operon, were individually constructed and screened for p-coumaryl alcohol formation within a few days. The absolute product titer of the best five variants ranged from 48 to 52 mg/L p-coumaryl alcohol without any further optimization of growth and production conditions. CONCLUSIONS: Operon-PLICing is sequence-independent and thus does not require any specific recognition or target sequences for enzymatic activities since all hybridization sites can be arbitrarily selected. In fact, after PCR-amplification, no endonucleases or ligases, frequently used in other methods, are needed. The modularity, simplicity and robustness of Operon-PLICing would be perfectly suited for an automation of cloning in the microtiter plate format.


Assuntos
Escherichia coli/genética , Escherichia coli/metabolismo , Engenharia Metabólica/métodos , Propionatos/metabolismo , Ácidos Cumáricos , Óperon
16.
Methods Mol Biol ; 1179: 45-68, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25055770

RESUMO

Sequence Saturation Mutagenesis (SeSaM) is a random mutagenesis method developed to overcome the limitations of existing error-prone PCR (epPCR) protocols. SeSaM is advantageous with respect to (1) elimination of mutagenic "hot spots", (2) increase in frequency of subsequent nucleotide substitutions, (3) control over the mutational bias through the utilization of universal base analogs, and, consequently, (4) the prospect of generating transversion-enriched mutant libraries. These advanced features lead to chemically diverse mutant libraries on the protein level, essentially making SeSaM a complementary technology to transition biased epPCR mutagenesis methods.


Assuntos
Mutagênese/genética , Evolução Molecular Direcionada/métodos , Reação em Cadeia da Polimerase
17.
Methods Mol Biol ; 1179: 139-49, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25055775

RESUMO

Multi-site-saturation mutagenesis allows altering of "localizable" properties such as activity and selectivity and enables the discovery of cooperative amino acid substitutions which are unlikely to be discovered by saturating single codons individually or iteratively. The herein presented method "OmniChange" does not require any DNA modifying enzyme (e.g., endonucleases or ligases), and diverse mutant libraries with up to five simultaneously saturated positions are generated in a robust and technically simple manner in four steps. The key feature of the OmniChange method is a highly efficient chemical cleavage of phosphorothiolated nucleotides by ethanol-iodine to generate 12-nucleotide-long 5' overhangs in double-stranded DNA. The generated vector and inserts can be hybridized in a one-pot assembly leading to fully functional mutagenic plasmids, and the employed E. coli host can easily ligate up to 10 DNA nicks without any further enzymatic treatment. OmniChange is furthermore a reliable and general tool for multi-DNA fragment assembly which is DNA sequence independent.


Assuntos
Códon/genética , Mutagênese Sítio-Dirigida/métodos , Clonagem Molecular
18.
J Biotechnol ; 191: 196-204, 2014 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-24925696

RESUMO

Biocascades allow one-pot synthesis of chemical building blocks omitting purification of reaction intermediates and expenses for downstream processing. Here we show the first whole cell double oxidation of n-heptane to produce chiral alcohols and heptanones. The concept of an artificial operon for co-expression of a monooxygenase from Bacillus megaterium (P450 BM3) and an alcohol dehydrogenase (RE-ADH) from Rhodococcus erythropolis is reported and compared to the widely used two-plasmid or Duet-vector expression systems. Both catalysts are co-expressed on a polycistronic constructs (single mRNA) that reduces recombinant DNA content and metabolic burden for the host cell, therefore increasing growth rate and expression level. Using the artificial operon system, the expression of P450 BM3 reached 81mgg(-1) cell dry weight. In addition, in situ cofactor regeneration through the P450 BM3/RE-ADH couple was enhanced by coupling to glucose oxidation by E. coli. Under optimized reaction conditions the artificial operon system displayed a product formation of 656mgL(-1) (5.7mM) of reaction products (heptanols+heptanones), which is 3-fold higher than the previously reported values for an in vitro oxidation cascade. In conjunction with the high product concentrations it was possible to obtain ee values of >99% for (S)-3-heptanol. Coexpression of a third alcohol dehydrogenase from Lactobacillus brevis (Lb-ADH) in the same host yielded complete oxidation of all heptanol isomers. Introduction of a second ADH enabled further to utilize both cofactors in the host cell (NADH and NADPH) which illustrates the simplicity and modular character of the whole cell oxidation concept employing an artificial operon system.


Assuntos
Álcool Desidrogenase/biossíntese , Heptanos/metabolismo , Oxigenases de Função Mista/biossíntese , Oxirredução , Álcool Desidrogenase/metabolismo , Alcanos/química , Alcanos/metabolismo , Bacillus megaterium/enzimologia , Catálise , Escherichia coli , Regulação Enzimológica da Expressão Gênica , Oxigenases de Função Mista/metabolismo , NADP/química , Oxigênio/química , Oxigênio/metabolismo , Rhodococcus/enzimologia , Água/química , Água/metabolismo
19.
J Biotechnol ; 170: 68-72, 2014 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-24315971

RESUMO

Directed evolution of Yersinia mollaretii phytase (Ymphytase) yielded an improved variant SM2P3E4 (also named M1; D52N, T77K, K139E, G187S, V298M) in our previous study. Variant M1 retained high specific activity (993U/mg; equivalent to 93% of wild-type activity) and improved thermal resistance (T50 improved by 1.5°C compared to wild-type at 58°C; 20min incubation time), making variant M1 an attractive enzyme for industrial applications. Recently, the OmniChange method was developed for multi-site saturation mutagenesis. The five sites identified in variant M1 were subjected to OmniChange saturation in order to explore whether a variant with higher activity, higher thermal resistance, and higher resistance at low pH (2-3h incubation was performed to mimic the gastric residence time of phytase) could be identified. Screening of a small library of 1100 clones, covering <0.004% of the theoretical sequence space of 3.35×10(7) variants, yielded a Ymphytase variant with 32% improved residual activity (58°C for 20min), 2°C increased apparent melting temperature (Tm), and 2-fold higher pH stability (pH 2.8; 3h incubation time) when compared to the wild-type Ymphytase. Compared to the M1 variant, the pH stability (pH 2.8; 3h incubation time) was improved by 3-fold, and thermal resistance as well as activity was improved slightly (residual activity: 32% compared to 20%; apparent Tm: 2°C compared to 1.5°C; activity difference <4%).


Assuntos
6-Fitase/metabolismo , Mutagênese Sítio-Dirigida , Yersinia/enzimologia , 6-Fitase/genética , Substituição de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Estabilidade Enzimática , Variação Genética , Mutagênese , Especificidade por Substrato , Temperatura
20.
Appl Microbiol Biotechnol ; 98(9): 4009-20, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24247989

RESUMO

Baeyer-Villiger monooxygenase-catalysed reactions are attractive for industrial processes. Here we report on expanding the substrate scope of phenylacetone monooxygenase (PAMO). In order to introduce activity on alicyclic ketones in PAMO, we generated and screened a library of 1,500 mutants. Based on recently published structures of PAMO and its mutants, we selected previously uncharacterised positions as well as known hot-spots to be targeted by focused mutagenesis. We were able to mutate 11 positions in a single step by using the OmniChange method for the mutant library generation. Screening of the library using a phosphate-based activity detection method allowed identification of a quadruple mutant (P253F/G254A/R258M/L443F) active on cyclopentanone. The substrate scope of this mutant is extended to several aliphatic ketones while activity on aromatic compounds typical for PAMO was preserved. Moreover, the mutant is as thermostable as PAMO. Our results demonstrate the power of screening structure-inspired, focused mutant libraries for creating Baeyer-Villiger monooxygenases with new specificities.


Assuntos
Cetonas/metabolismo , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Mutagênese , Acetona/análogos & derivados , Acetona/metabolismo , Testes Genéticos , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA