Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Neurosurg Focus ; 53(2): E3, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35916086

RESUMO

OBJECTIVE: Simulation is increasingly recognized as an important supplement to operative training. The live rat femoral artery model is a well-established model for microsurgical skills simulation. In this study, the authors present an 11-year experience incorporating a comprehensive, longitudinal microsurgical training curriculum into a Canadian neurosurgery program. The first goal was to evaluate training effectiveness, using a well-studied rating scale with strong validity. The second goal was to assess the impact of the curriculum on objective measures of subsequent operating room performance during postgraduate year (PGY)-5 and PGY-6 training. METHODS: PGY-2 neurosurgery residents completed a 1-year curriculum spanning 17 training sessions divided into 5 modules of increasing fidelity. Both perfused duck wing and live rat vessel training models were used. Three modules comprised live microvascular anastomosis. Trainee performance was video recorded and blindly graded using the Objective Structured Assessment of Technical Skills Global Rating Scale. Eleven participants who completed the training curriculum and 3 subjects who had not participated had their subsequent operative performances evaluated when they were at the PGY-5 and PGY-6 levels. RESULTS: Eighteen participants completed 106 microvascular anastomoses during the study. There was significant improvement in 6 measurable skills during the curriculum. The mean overall score was significantly higher on the fifth attempt compared with the first attempt for all 3 live anastomotic modules (p < 0.001). Each module had a different improvement profile across the skills assessed. Those who completed the microvascular skills curriculum demonstrated a greater number of independent evaluations during superficial surgical exposure, deep exposure, and primary maneuvers at the PGY-5 and PGY-6 levels. CONCLUSIONS: High-fidelity microsurgical simulation training leads to significant improvement in microneurosurgical skills. Transfer of acquired skills to the operative environment and durability for at least 3 to 4 years show encouraging preliminary results and are subject to ongoing investigation.


Assuntos
Internato e Residência , Treinamento por Simulação , Animais , Canadá , Competência Clínica , Avaliação Educacional/métodos , Humanos , Ratos
2.
J Neurointerv Surg ; 8(4): 418-22, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25676148

RESUMO

BACKGROUND: Total body hypothermia is an established neuroprotectant in global cerebral ischemia. The role of hypothermia in acute ischemic stroke remains uncertain. Selective application of hypothermia to a region of focal ischemia may provide similar protection with more rapid cooling and elimination of systemic side effects. We studied the effect of selective endovascular cooling in a focal stroke model in adult domestic swine. METHODS: After craniotomy under general anesthesia, a proximal middle cerebral artery branch was occluded for 3 h, followed by 3 h of reperfusion. In half of the animals, selective hypothermia was induced during reperfusion using a dual lumen balloon occlusion catheter placed in the ipsilateral common carotid artery. Following reperfusion, the animals were sacrificed. Brain MRI and histology were evaluated by experts who were blinded to the intervention. RESULTS: 25 animals were available for analysis. Using selective hypothermia, hemicranial temperature was successfully cooled to a mean of 26.5 °C. Average time from start of perfusion to attainment of moderate hypothermia (<30 °C) was 25 min. Mean MRI stroke volumes were significantly reduced by selective cooling (0.050±0.059 control, 0.005±0.011 hypothermia (ratio stroke:hemisphere volume) (p=0.046). Stroke pathology volumes were reduced by 42% compared with controls (p=0.256). CONCLUSIONS: Selective moderate hypothermia was rapidly induced using endovascular techniques in a clinically realistic swine stroke model. A significant reduction in stroke volume on MRI was observed. Endovascular selective hypothermia can provide neuroprotection within time frames relevant to acute ischemic stroke treatment.


Assuntos
Oclusão com Balão/métodos , Isquemia Encefálica/terapia , Modelos Animais de Doenças , Hipotermia Induzida/métodos , Acidente Vascular Cerebral/terapia , Animais , Isquemia Encefálica/diagnóstico , Cateterismo/métodos , Acidente Vascular Cerebral/diagnóstico , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA