Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Cell Genom ; 4(4): 100540, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38604125

RESUMO

Mechanisms underlying phenotypic divergence across species remain unresolved. In this issue of Cell Genomics, Hansen, Fong, et al.1 systematically dissect human and rhesus macaque gene expression divergence by screening tens of thousands of orthologous elements for enhancer activity in lymphoblastoid cell lines, revealing a much greater role for trans divergence at levels equal to those of cis effects, counter to the prevailing consensus in the field.


Assuntos
Evolução Molecular , Regulação da Expressão Gênica , Animais , Humanos , Macaca mulatta/genética , Sequências Reguladoras de Ácido Nucleico , Genômica
2.
Development ; 151(3)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38345109

RESUMO

The field of developmental biology has declined in prominence in recent decades, with off-shoots from the field becoming more fashionable and highly funded. This has created inequity in discovery and opportunity, partly due to the perception that the field is antiquated or not cutting edge. A 'think tank' of scientists from multiple developmental biology-related disciplines came together to define specific challenges in the field that may have inhibited innovation, and to provide tangible solutions to some of the issues facing developmental biology. The community suggestions include a call to the community to help 'rebrand' the field, alongside proposals for additional funding apparatuses, frameworks for interdisciplinary innovative collaborations, pedagogical access, improved science communication, increased diversity and inclusion, and equity of resources to provide maximal impact to the community.


Assuntos
Biologia do Desenvolvimento
3.
Cell ; 186(26): 5766-5783.e25, 2023 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-38134874

RESUMO

The enhanced cognitive abilities characterizing the human species result from specialized features of neurons and circuits. Here, we report that the hominid-specific gene LRRC37B encodes a receptor expressed in human cortical pyramidal neurons (CPNs) and selectively localized to the axon initial segment (AIS), the subcellular compartment triggering action potentials. Ectopic expression of LRRC37B in mouse CPNs in vivo leads to reduced intrinsic excitability, a distinctive feature of some classes of human CPNs. Molecularly, LRRC37B binds to the secreted ligand FGF13A and to the voltage-gated sodium channel (Nav) ß-subunit SCN1B. LRRC37B concentrates inhibitory effects of FGF13A on Nav channel function, thereby reducing excitability, specifically at the AIS level. Electrophysiological recordings in adult human cortical slices reveal lower neuronal excitability in human CPNs expressing LRRC37B. LRRC37B thus acts as a species-specific modifier of human neuron excitability, linking human genome and cell evolution, with important implications for human brain function and diseases.


Assuntos
Neurônios , Células Piramidais , Canais de Sódio Disparados por Voltagem , Animais , Humanos , Camundongos , Potenciais de Ação/fisiologia , Axônios/metabolismo , Neurônios/metabolismo , Canais de Sódio Disparados por Voltagem/genética , Canais de Sódio Disparados por Voltagem/metabolismo
4.
Am J Psychiatry ; 180(4): 265-276, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-37002692

RESUMO

While autism spectrum disorder affects nearly 2% of children in the United States, little is known with certainty concerning the etiologies and brain systems involved. This is due, in part, to the substantial heterogeneity in the presentation of the core symptoms of autism as well as the great number of co-occurring conditions that are common in autistic individuals. Understanding the neurobiology of autism is further hampered by the limited availability of postmortem brain tissue to determine the cellular and molecular alterations that take place in the autistic brain. Animal models therefore provide great translational value in helping to define the neural systems that constitute the social brain and mediate repetitive behaviors or interests. If they are based on genetic or environmental factors that contribute to autism, organisms from flies to nonhuman primates may serve as models of the neural structure or function of the autistic brain. Ultimately, successful models can also be employed to test the safety and effectiveness of potential therapeutics. This is an overview of the major animal species that are currently used as models of autism, including an appraisal of the advantages and limitations of each.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Neurociências , Animais , Humanos , Transtorno Autístico/genética , Transtorno do Espectro Autista/etiologia , Transtorno do Espectro Autista/genética , Encéfalo , Neurobiologia
5.
Am J Biol Anthropol ; 181 Suppl 76: 118-144, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36794631

RESUMO

Structural variants (SVs)-including duplications, deletions, and inversions of DNA-can have significant genomic and functional impacts but are technically difficult to identify and assay compared with single-nucleotide variants. With the aid of new genomic technologies, it has become clear that SVs account for significant differences across and within species. This phenomenon is particularly well-documented for humans and other primates due to the wealth of sequence data available. In great apes, SVs affect a larger number of nucleotides than single-nucleotide variants, with many identified SVs exhibiting population and species specificity. In this review, we highlight the importance of SVs in human evolution by (1) how they have shaped great ape genomes resulting in sensitized regions associated with traits and diseases, (2) their impact on gene functions and regulation, which subsequently has played a role in natural selection, and (3) the role of gene duplications in human brain evolution. We further discuss how to incorporate SVs in research, including the strengths and limitations of various genomic approaches. Finally, we propose future considerations in integrating existing data and biospecimens with the ever-expanding SV compendium propelled by biotechnology advancements.


Assuntos
Variação Estrutural do Genoma , Hominidae , Animais , Humanos , Genoma , Genômica , Hominidae/genética , Primatas/genética , Nucleotídeos
6.
Genome Biol ; 24(1): 31, 2023 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-36810122

RESUMO

The current version of the human reference genome, GRCh38, contains a number of errors including 1.2 Mbp of falsely duplicated and 8.04 Mbp of collapsed regions. These errors impact the variant calling of 33 protein-coding genes, including 12 with medical relevance. Here, we present FixItFelix, an efficient remapping approach, together with a modified version of the GRCh38 reference genome that improves the subsequent analysis across these genes within minutes for an existing alignment file while maintaining the same coordinates. We showcase these improvements over multi-ethnic control samples, demonstrating improvements for population variant calling as well as eQTL studies.


Assuntos
Genoma Humano , Genômica , Humanos , Sequenciamento de Nucleotídeos em Larga Escala , Análise de Sequência de DNA
7.
Genes Brain Behav ; 21(5): e12812, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35652318

RESUMO

Social monogamy is a reproductive strategy characterized by pair living and defense of a common territory. Pair bonding, sometimes displayed by monogamous species, is an affective construct that includes preference for a specific partner, distress upon separation, and the ability of the partner to buffer against stress. Many seahorse species show a monogamous social structure in the wild, but their pair bond has not been well studied. We examined the gene expression of lined seahorses (Hippocampus erectus) during and after the process of pairing in the laboratory as well as color change (luminance), a potential form of social communication and behavioral synchrony between pair mates. When a seahorse of either sex was interacting with its pair mate, their changes in luminance ("brightness") were correlated and larger than when interacting with an opposite-sex stranger. At the conclusion of testing, subjects were euthanized, RNA was extracted from whole brains and analyzed via RNA sequencing. Changes in gene expression in paired males versus those that were unpaired included processes governing metabolic activity, hormones and cilia. Perhaps most interesting is the overlap in gene expression change induced by pairing in both male seahorses and male prairie voles, including components of hormone systems regulating reproduction. Because of our limited sample size, we consider our results and interpretations to be preliminary, and prompts for further exploration. Future studies will expand upon these findings and investigate the neuroendocrine and genetic basis of these behaviors.


Assuntos
Ligação do Par , Smegmamorpha , Animais , Arvicolinae/genética , Expressão Gênica , Humanos , Masculino , Reprodução , Comportamento Sexual Animal , Smegmamorpha/genética , Comportamento Social
8.
Science ; 376(6588): eabl3533, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35357935

RESUMO

Compared to its predecessors, the Telomere-to-Telomere CHM13 genome adds nearly 200 million base pairs of sequence, corrects thousands of structural errors, and unlocks the most complex regions of the human genome for clinical and functional study. We show how this reference universally improves read mapping and variant calling for 3202 and 17 globally diverse samples sequenced with short and long reads, respectively. We identify hundreds of thousands of variants per sample in previously unresolved regions, showcasing the promise of the T2T-CHM13 reference for evolutionary and biomedical discovery. Simultaneously, this reference eliminates tens of thousands of spurious variants per sample, including reduction of false positives in 269 medically relevant genes by up to a factor of 12. Because of these improvements in variant discovery coupled with population and functional genomic resources, T2T-CHM13 is positioned to replace GRCh38 as the prevailing reference for human genetics.


Assuntos
Variação Genética , Genoma Humano , Genômica/normas , Análise de Sequência de DNA/normas , Humanos , Padrões de Referência
9.
Genome Biol ; 23(1): 46, 2022 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-35168652

RESUMO

BACKGROUND: Autism spectrum disorder (ASD) involves complex genetics interacting with the perinatal environment, complicating the discovery of common genetic risk. The epigenetic layer of DNA methylation shows dynamic developmental changes and molecular memory of in utero experiences, particularly in placenta, a fetal tissue discarded at birth. However, current array-based methods to identify novel ASD risk genes lack coverage of the most structurally and epigenetically variable regions of the human genome. RESULTS: We use whole genome bisulfite sequencing in placenta samples from prospective ASD studies to discover a previously uncharacterized ASD risk gene, LOC105373085, renamed NHIP. Out of 134 differentially methylated regions associated with ASD in placental samples, a cluster at 22q13.33 corresponds to a 118-kb hypomethylated block that replicates in two additional cohorts. Within this locus, NHIP is functionally characterized as a nuclear peptide-encoding transcript with high expression in brain, and increased expression following neuronal differentiation or hypoxia, but decreased expression in ASD placenta and brain. NHIP overexpression increases cellular proliferation and alters expression of genes regulating synapses and neurogenesis, overlapping significantly with known ASD risk genes and NHIP-associated genes in ASD brain. A common structural variant disrupting the proximity of NHIP to a fetal brain enhancer is associated with NHIP expression and methylation levels and ASD risk, demonstrating a common genetic influence. CONCLUSIONS: Together, these results identify and initially characterize a novel environmentally responsive ASD risk gene relevant to brain development in a hitherto under-characterized region of the human genome.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Transtorno do Espectro Autista/genética , Transtorno Autístico/complicações , Transtorno Autístico/genética , Transtorno Autístico/metabolismo , Encéfalo/metabolismo , Metilação de DNA , Epigênese Genética , Epigenoma , Feminino , Genes Reguladores , Humanos , Recém-Nascido , Placenta/metabolismo , Gravidez , Estudos Prospectivos
10.
BMC Genomics ; 23(1): 12, 2022 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-34986794

RESUMO

BACKGROUND: Zebrafish have practical features that make them a useful model for higher-throughput tests of gene function using CRISPR/Cas9 editing to create 'knockout' models. In particular, the use of G0 mosaic mutants has potential to increase throughput of functional studies significantly but may suffer from transient effects of introducing Cas9 via microinjection. Further, a large number of computational and empirical tools exist to design CRISPR assays but often produce varied predictions across methods leaving uncertainty in choosing an optimal approach for zebrafish studies. METHODS: To systematically assess accuracy of tool predictions of on- and off-target gene editing, we subjected zebrafish embryos to CRISPR/Cas9 with 50 different guide RNAs (gRNAs) targeting 14 genes. We also investigate potential confounders of G0-based CRISPR screens by assaying control embryos for spurious mutations and altered gene expression. RESULTS: We compared our experimental in vivo editing efficiencies in mosaic G0 embryos with those predicted by eight commonly used gRNA design tools and found large discrepancies between methods. Assessing off-target mutations (predicted in silico and in vitro) found that the majority of tested loci had low in vivo frequencies (< 1%). To characterize if commonly used 'mock' CRISPR controls (larvae injected with Cas9 enzyme or mRNA with no gRNA) exhibited spurious molecular features that might exacerbate studies of G0 mosaic CRISPR knockout fish, we generated an RNA-seq dataset of various control larvae at 5 days post fertilization. While we found no evidence of spontaneous somatic mutations of injected larvae, we did identify several hundred differentially-expressed genes with high variability between injection types. Network analyses of shared differentially-expressed genes in the 'mock' injected larvae implicated a number of key regulators of common metabolic pathways, and gene-ontology analysis revealed connections with response to wounding and cytoskeleton organization, highlighting a potentially lasting effect from the microinjection process that requires further investigation. CONCLUSION: Overall, our results provide a valuable resource for the zebrafish community for the design and execution of CRISPR/Cas9 experiments.


Assuntos
Edição de Genes , Peixe-Zebra , Animais , Proteína 9 Associada à CRISPR/genética , Sistemas CRISPR-Cas/genética , RNA Guia de Cinetoplastídeos/genética , Peixe-Zebra/genética
11.
eNeuro ; 8(6)2021.
Artigo em Inglês | MEDLINE | ID: mdl-34725102

RESUMO

Tracking and quantifying the abundance and location of cells in the developing brain is essential in neuroscience research, enabling a greater understanding of mechanisms underlying nervous system morphogenesis. Widely used experimental methods to quantify cells labeled with fluorescent markers, such as immunohistochemistry (IHC), in situ hybridization, and expression of transgenes via stable lines or transient in utero electroporations (IUEs), depend on accurate and consistent quantification of images. Current methods to quantify fluorescently-labeled cells rely on labor-intensive manual counting approaches, such as the Fiji plugin Cell Counter, which requires custom macros to enable higher-throughput analyses. Here, we present RapID Cell Counter, a semi-automated cell-counting tool with an easy-to-implement graphical user interface (GUI), which facilitates quick and consistent quantifications of cell density within user-defined boundaries that can be divided into equally-partitioned segments. Compared with the standard manual counting approach, we show that RapID matched accuracy and consistency and only required ∼10% of user time relative to manual counting methods, when quantifying the distribution of fluorescently-labeled neurons in mouse IUE experiments. Using RapID, we recapitulated previously published work focusing on two genes, SRGAP2 and CUL5, important for projection neuron (PN) migration in the neocortex and used it to quantify PN displacement in a mouse knock-out model of RBX2 Moreover, RapID is capable of quantifying other cell types in the brain with complex cell morphologies, including astrocytes and dopaminergic neurons. We propose RapID as an efficient method for neuroscience researchers to process fluorescently-labeled brain images in a consistent, accurate, and mid-throughput manner.


Assuntos
Contagem de Células/métodos , Neocórtex , Neurônios , Animais , Astrócitos , Gráficos por Computador , Proteínas Ativadoras de GTPase , Camundongos , Morfogênese , Neocórtex/diagnóstico por imagem , Interface Usuário-Computador
12.
Mol Biol Evol ; 38(8): 3060-3077, 2021 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-34009325

RESUMO

Emerging evidence links genes within human-specific segmental duplications (HSDs) to traits and diseases unique to our species. Strikingly, despite being nearly identical by sequence (>98.5%), paralogous HSD genes are differentially expressed across human cell and tissue types, though the underlying mechanisms have not been examined. We compared cross-tissue mRNA levels of 75 HSD genes from 30 families between humans and chimpanzees and found expression patterns consistent with relaxed selection on or neofunctionalization of derived paralogs. In general, ancestral paralogs exhibited greatest expression conservation with chimpanzee orthologs, though exceptions suggest certain derived paralogs may retain or supplant ancestral functions. Concordantly, analysis of long-read isoform sequencing data sets from diverse human tissues and cell lines found that about half of derived paralogs exhibited globally lower expression. To understand mechanisms underlying these differences, we leveraged data from human lymphoblastoid cell lines (LCLs) and found no relationship between paralogous expression divergence and post-transcriptional regulation, sequence divergence, or copy-number variation. Considering cis-regulation, we reanalyzed ENCODE data and recovered hundreds of previously unidentified candidate CREs in HSDs. We also generated large-insert ChIP-sequencing data for active chromatin features in an LCL to better distinguish paralogous regions. Some duplicated CREs were sufficient to drive differential reporter activity, suggesting they may contribute to divergent cis-regulation of paralogous genes. This work provides evidence that cis-regulatory divergence contributes to novel expression patterns of recent gene duplicates in humans.


Assuntos
Duplicação Gênica , Regulação da Expressão Gênica , Genoma Humano , Duplicações Segmentares Genômicas , Animais , Linhagem Celular , Variações do Número de Cópias de DNA , Humanos , Pan troglodytes , Regiões Promotoras Genéticas
13.
Front Cell Dev Biol ; 8: 586296, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33330465

RESUMO

In recent years, zebrafish have become commonly used as a model for studying human traits and disorders. Their small size, high fecundity, and rapid development allow for more high-throughput experiments compared to other vertebrate models. Given that zebrafish share >70% gene homologs with humans and their genomes can be readily edited using highly efficient CRISPR methods, we are now able to rapidly generate mutations impacting practically any gene of interest. Unfortunately, our ability to phenotype mutant larvae has not kept pace. To address this challenge, we have developed a protocol that obtains multiple phenotypic measurements from individual zebrafish larvae in an automated and parallel fashion, including morphological features (i.e., body length, eye area, and head size) and movement/behavior. By assaying wild-type zebrafish in a variety of conditions, we determined optimal parameters that avoid significant developmental defects or physical damage; these include morphological imaging of larvae at two time points [3 days post fertilization (dpf) and 5 dpf] coupled with motion tracking of behavior at 5 dpf. As a proof-of-principle, we tested our approach on two novel CRISPR-generated mutant zebrafish lines carrying predicted null-alleles of syngap1b and slc7a5, orthologs to two human genes implicated in autism-spectrum disorder, intellectual disability, and epilepsy. Using our optimized high-throughput phenotyping protocol, we recapitulated previously published results from mouse and zebrafish models of these candidate genes. In summary, we describe a rapid parallel pipeline to characterize morphological and behavioral features of individual larvae in a robust and consistent fashion, thereby improving our ability to better identify genes important in human traits and disorders.

14.
Genome Res ; 30(11): 1680-1693, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33093070

RESUMO

Rhesus macaque is an Old World monkey that shared a common ancestor with human ∼25 Myr ago and is an important animal model for human disease studies. A deep understanding of its genetics is therefore required for both biomedical and evolutionary studies. Among structural variants, inversions represent a driving force in speciation and play an important role in disease predisposition. Here we generated a genome-wide map of inversions between human and macaque, combining single-cell strand sequencing with cytogenetics. We identified 375 total inversions between 859 bp and 92 Mbp, increasing by eightfold the number of previously reported inversions. Among these, 19 inversions flanked by segmental duplications overlap with recurrent copy number variants associated with neurocognitive disorders. Evolutionary analyses show that in 17 out of 19 cases, the Hominidae orientation of these disease-associated regions is always derived. This suggests that duplicated sequences likely played a fundamental role in generating inversions in humans and great apes, creating architectures that nowadays predispose these regions to disease-associated genetic instability. Finally, we identified 861 genes mapping at 156 inversions breakpoints, with some showing evidence of differential expression in human and macaque cell lines, thus highlighting candidates that might have contributed to the evolution of species-specific features. This study depicts the most accurate fine-scale map of inversions between human and macaque using a two-pronged integrative approach, such as single-cell strand sequencing and cytogenetics, and represents a valuable resource toward understanding of the biology and evolution of primate species.


Assuntos
Pontos de Quebra do Cromossomo , Inversão Cromossômica , Evolução Molecular , Macaca mulatta/genética , Animais , Doença/genética , Regulação da Expressão Gênica , Genoma , Genômica , Heterozigoto , Humanos , Hibridização in Situ Fluorescente , Recombinação Genética , Análise de Sequência de DNA , Análise de Célula Única
15.
Nature ; 585(7823): 79-84, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32663838

RESUMO

After two decades of improvements, the current human reference genome (GRCh38) is the most accurate and complete vertebrate genome ever produced. However, no single chromosome has been finished end to end, and hundreds of unresolved gaps persist1,2. Here we present a human genome assembly that surpasses the continuity of GRCh382, along with a gapless, telomere-to-telomere assembly of a human chromosome. This was enabled by high-coverage, ultra-long-read nanopore sequencing of the complete hydatidiform mole CHM13 genome, combined with complementary technologies for quality improvement and validation. Focusing our efforts on the human X chromosome3, we reconstructed the centromeric satellite DNA array (approximately 3.1 Mb) and closed the 29 remaining gaps in the current reference, including new sequences from the human pseudoautosomal regions and from cancer-testis ampliconic gene families (CT-X and GAGE). These sequences will be integrated into future human reference genome releases. In addition, the complete chromosome X, combined with the ultra-long nanopore data, allowed us to map methylation patterns across complex tandem repeats and satellite arrays. Our results demonstrate that finishing the entire human genome is now within reach, and the data presented here will facilitate ongoing efforts to complete the other human chromosomes.


Assuntos
Cromossomos Humanos X/genética , Genoma Humano/genética , Telômero/genética , Centrômero/genética , Ilhas de CpG/genética , Metilação de DNA , DNA Satélite/genética , Feminino , Humanos , Mola Hidatiforme/genética , Masculino , Gravidez , Reprodutibilidade dos Testes , Testículo/metabolismo
16.
Genes (Basel) ; 11(3)2020 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-32143403

RESUMO

Recent efforts to comprehensively characterize great ape genetic diversity using short-read sequencing and single-nucleotide variants have led to important discoveries related to selection within species, demographic history, and lineage-specific traits. Structural variants (SVs), including deletions and inversions, comprise a larger proportion of genetic differences between and within species, making them an important yet understudied source of trait divergence. Here, we used a combination of long-read and -range sequencing approaches to characterize the structural variant landscape of two additional Pan troglodytes verus individuals, one of whom carries 13% admixture from Pan troglodytes troglodytes. We performed optical mapping of both individuals followed by nanopore sequencing of one individual. Filtering for larger variants (>10 kbp) and combined with genotyping of SVs using short-read data from the Great Ape Genome Project, we identified 425 deletions and 59 inversions, of which 88 and 36, respectively, were novel. Compared with gene expression in humans, we found a significant enrichment of chimpanzee genes with differential expression in lymphoblastoid cell lines and induced pluripotent stem cells, both within deletions and near inversion breakpoints. We examined chromatin-conformation maps from human and chimpanzee using these same cell types and observed alterations in genomic interactions at SV breakpoints. Finally, we focused on 56 genes impacted by SVs in >90% of chimpanzees and absent in humans and gorillas, which may contribute to chimpanzee-specific features. Sequencing a greater set of individuals from diverse subspecies will be critical to establish the complete landscape of genetic variation in chimpanzees.


Assuntos
Genoma/genética , Variação Estrutural do Genoma/genética , Hominidae/genética , Pan troglodytes/genética , Animais , Inversão Cromossômica/genética , Genômica , Gorilla gorilla/genética , Humanos , Sequenciamento por Nanoporos , Mapeamento por Restrição , Análise de Sequência de DNA
17.
Cell Rep ; 23(11): 3170-3182, 2018 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-29898390

RESUMO

Atrophy of neurons in the prefrontal cortex (PFC) plays a key role in the pathophysiology of depression and related disorders. The ability to promote both structural and functional plasticity in the PFC has been hypothesized to underlie the fast-acting antidepressant properties of the dissociative anesthetic ketamine. Here, we report that, like ketamine, serotonergic psychedelics are capable of robustly increasing neuritogenesis and/or spinogenesis both in vitro and in vivo. These changes in neuronal structure are accompanied by increased synapse number and function, as measured by fluorescence microscopy and electrophysiology. The structural changes induced by psychedelics appear to result from stimulation of the TrkB, mTOR, and 5-HT2A signaling pathways and could possibly explain the clinical effectiveness of these compounds. Our results underscore the therapeutic potential of psychedelics and, importantly, identify several lead scaffolds for medicinal chemistry efforts focused on developing plasticity-promoting compounds as safe, effective, and fast-acting treatments for depression and related disorders.


Assuntos
Antidepressivos/farmacologia , Plasticidade Neuronal/efeitos dos fármacos , Animais , Fator Neurotrófico Derivado do Encéfalo/farmacologia , Células Cultivadas , Córtex Cerebral/citologia , Córtex Cerebral/metabolismo , Feminino , Masculino , Microscopia de Fluorescência , Neurogênese/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Receptor 5-HT2A de Serotonina/metabolismo , Receptor trkB/metabolismo , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo
18.
PLoS Genet ; 14(5): e1007298, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29723195

RESUMO

Ambient temperature is a critical environmental factor for all living organisms. It was likely an important selective force as modern humans recently colonized temperate and cold Eurasian environments. Nevertheless, as of yet we have limited evidence of local adaptation to ambient temperature in populations from those environments. To shed light on this question, we exploit the fact that humans are a cosmopolitan species that inhabit territories under a wide range of temperatures. Focusing on cold perception-which is central to thermoregulation and survival in cold environments-we show evidence of recent local adaptation on TRPM8. This gene encodes for a cation channel that is, to date, the only temperature receptor known to mediate an endogenous response to moderate cold. The upstream variant rs10166942 shows extreme population differentiation, with frequencies that range from 5% in Nigeria to 88% in Finland (placing this SNP in the 0.02% tail of the FST empirical distribution). When all populations are jointly analyzed, allele frequencies correlate with latitude and temperature beyond what can be explained by shared ancestry and population substructure. Using a Bayesian approach, we infer that the allele originated and evolved neutrally in Africa, while positive selection raised its frequency to different degrees in Eurasian populations, resulting in allele frequencies that follow a latitudinal cline. We infer strong positive selection, in agreement with ancient DNA showing high frequency of the allele in Europe 3,000 to 8,000 years ago. rs10166942 is important phenotypically because its ancestral allele is protective of migraine. This debilitating disorder varies in prevalence across human populations, with highest prevalence in individuals of European descent-precisely the population with the highest frequency of rs10166942 derived allele. We thus hypothesize that local adaptation on previously neutral standing variation may have contributed to the genetic differences that exist in the prevalence of migraine among human populations today.


Assuntos
Adaptação Fisiológica/genética , Temperatura Baixa , Polimorfismo de Nucleotídeo Único , Canais de Cátion TRPM/genética , África , Ásia , Teorema de Bayes , Europa (Continente) , Perfilação da Expressão Gênica , Frequência do Gene , Genética Populacional/estatística & dados numéricos , Genótipo , Humanos , Desequilíbrio de Ligação , Seleção Genética
19.
Nat Ecol Evol ; 1(3): 69, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28580430

RESUMO

Segmental duplications contribute to human evolution, adaptation and genomic instability but are often poorly characterized. We investigate the evolution, genetic variation and coding potential of human-specific segmental duplications (HSDs). We identify 218 HSDs based on analysis of 322 deeply sequenced archaic and contemporary hominid genomes. We sequence 550 human and nonhuman primate genomic clones to reconstruct the evolution of the largest, most complex regions with protein-coding potential (n=80 genes/33 gene families). We show that HSDs are non-randomly organized, associate preferentially with ancestral ape duplications termed "core duplicons", and evolved primarily in an interspersed inverted orientation. In addition to Homo sapiens-specific gene expansions (e.g., TCAF1/2), we highlight ten gene families (e.g., ARHGAP11B and SRGAP2C) where copy number never returns to the ancestral state, there is evidence of mRNA splicing, and no common gene-disruptive mutations are observed in the general population. Such duplicates are candidates for the evolution of human-specific adaptive traits.

20.
Genome Biol ; 18(1): 49, 2017 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-28279197

RESUMO

BACKGROUND: Gene innovation by duplication is a fundamental evolutionary process but is difficult to study in humans due to the large size, high sequence identity, and mosaic nature of segmental duplication blocks. The human-specific gene hydrocephalus-inducing 2, HYDIN2, was generated by a 364 kbp duplication of 79 internal exons of the large ciliary gene HYDIN from chromosome 16q22.2 to chromosome 1q21.1. Because the HYDIN2 locus lacks the ancestral promoter and seven terminal exons of the progenitor gene, we sought to characterize transcription at this locus by coupling reverse transcription polymerase chain reaction and long-read sequencing. RESULTS: 5' RACE indicates a transcription start site for HYDIN2 outside of the duplication and we observe fusion transcripts spanning both the 5' and 3' breakpoints. We observe extensive splicing diversity leading to the formation of altered open reading frames (ORFs) that appear to be under relaxed selection. We show that HYDIN2 adopted a new promoter that drives an altered pattern of expression, with highest levels in neural tissues. We estimate that the HYDIN duplication occurred ~3.2 million years ago and find that it is nearly fixed (99.9%) for diploid copy number in contemporary humans. Examination of 73 chromosome 1q21 rearrangement patients reveals that HYDIN2 is deleted or duplicated in most cases. CONCLUSIONS: Together, these data support a model of rapid gene innovation by fusion of incomplete segmental duplications, altered tissue expression, and potential subfunctionalization or neofunctionalization of HYDIN2 early in the evolution of the Homo lineage.


Assuntos
Duplicação Gênica , Fusão Gênica , Neurônios/metabolismo , Aberrações Cromossômicas , Pontos de Quebra do Cromossomo , Transtornos Cromossômicos/genética , Cromossomos Humanos Par 1 , Variações do Número de Cópias de DNA , Evolução Molecular , Conversão Gênica , Perfilação da Expressão Gênica , Variação Genética , Genética Populacional , Genômica/métodos , Humanos , Fases de Leitura Aberta , Especificidade de Órgãos/genética , Fenótipo , Seleção Genética , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA