Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
N Biotechnol ; 68: 48-56, 2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35114407

RESUMO

African horse sickness (AHS) is a debilitating and highly infectious arthropod-borne disease affecting all species of Equidae. The causative agent of AHS is the non-enveloped dsRNA African horse sickness virus (AHSV), belonging in the genus Orbivirus, family Reoviridae. The identification and surveillance of AHSV by simple and reliable diagnostic tools is essential for managing AHS outbreaks. Indirect ELISAs utilising soluble AHSV antigen or recombinant VP7, an immunodominant and serogroup-specific major core structural protein, are commonly used for serological diagnostic assays. Plant production systems are a significant alternative for recombinant protein production, as they are safe, easily scalable, production rates are rapid and upstream processes are more cost-effective than more traditional expression systems. This pilot study reports the successful production of AHSV-5 VP7 quasi-crystals in Nicotiana benthamiana by Agrobacterium tumefaciens-mediated transient expression using the self-replicating pRIC3.0 plant expression vector. After purification by means of density gradient ultracentrifugation, yields of pure VP7 of 2.66 µg/g fresh leaf mass (FLM) were achieved. Purified plant-produced AHSV-5 VP7 detected AHSV-specific antibodies in horse sera in an indirect ELISA and was able to distinguish between AHSV-positive and negative sera. Additionally, plant-produced AHSV-5 VP7 detected AHSV-specific antibodies to the same degree as E. coli-produced VP7. These results justify further investigation into the diagnostic capability of plant-produced AHSV VP7 quasi-crystals. To the best of our knowledge, this is the first report of AHSV VP7 quasi-crystal production in N. benthamiana and the first time that plant-produced VP7's potential as a diagnostic has been assessed.


Assuntos
Vírus da Doença Equina Africana , Doença Equina Africana , Doença Equina Africana/diagnóstico , Vírus da Doença Equina Africana/genética , Animais , Escherichia coli , Cavalos , Projetos Piloto , Proteínas do Core Viral/metabolismo
2.
Virus Res ; 294: 198284, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33421520

RESUMO

African horse sickness (AHS) is a devastating viral disease affecting equines and has resulted in many disastrous epizootics. To date, no successful therapeutic treatment exists for AHS, and commercially used live-attenuated vaccines have various undesirable side effects. Previous studies have shown that mice inoculated with insoluble African horse sickness virus (AHSV) VP7 crystals are protected from live challenge with a lethal dose of AHSV. This study investigates the humoral and cell-mediated immune responses in guinea-pigs to a safer monovalent vaccine alternative based on AHSV-5 VP7 quasi-crystals produced in plants. Guinea-pigs received prime- and boost-inoculations of between 10 and 50 µg of purified plant-produced AHSV VP7. Western immunoblot analysis of the humoral response showed stimulation of high titres of anti-VP7 antibodies 28 days after the boost-inoculation in sera from three of the five experimental animals. In addition, RNA-seq transcriptome profiling of guinea-pig spleen-derived RNA highlighted thirty significantly (q ≤ 0.05) differentially expressed genes involved in innate and adaptive immunity. Differential expression of genes involved in Th1, Th2 and Th17 cell differentiation suggest a cell-mediated immune response to AHSV-5 VP7. Upregulation of several important cytokines and cytokine receptors were noted, including TNFSF14, CX3CR1, IFNLR1 and IL17RA. Upregulation of IL17RA suggests a Th17 response which has been reported as a key component in AHSV immunity. While further investigation is needed to validate these findings, these results suggest that AHSV-5 VP7 quasi-crystals produced in N. benthamiana are immunogenic and induce both humoral and cell-mediated responses.


Assuntos
Vírus da Doença Equina Africana , Doença Equina Africana , Vacinas Virais , Doença Equina Africana/prevenção & controle , Vírus da Doença Equina Africana/genética , Animais , Anticorpos Antivirais , Cobaias , Cavalos , Imunidade , Camundongos , Receptores de Interferon , Vacinas Atenuadas
3.
Viruses ; 11(9)2019 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-31514299

RESUMO

African horse sickness is a devastating disease that causes great suffering and many fatalities amongst horses in sub-Saharan Africa. It is caused by nine different serotypes of the orbivirus African horse sickness virus (AHSV) and it is spread by Culicoid midges. The disease has significant economic consequences for the equine industry both in southern Africa and increasingly further afield as the geographic distribution of the midge vector broadens with global warming and climate change. Live attenuated vaccines (LAV) have been used with relative success for many decades but carry the risk of reversion to virulence and/or genetic re-assortment between outbreak and vaccine strains. Furthermore, the vaccines lack DIVA capacity, the ability to distinguish between vaccine-induced immunity and that induced by natural infection. These concerns have motivated interest in the development of new, more favourable recombinant vaccines that utilize viral vectors or are based on reverse genetics or virus-like particle technologies. This review summarizes the current understanding of AHSV structure and the viral replication cycle and also evaluates existing and potential vaccine strategies that may be applied to prevent or control the disease.


Assuntos
Vírus da Doença Equina Africana/imunologia , Doença Equina Africana/prevenção & controle , Vacinas Virais/imunologia , África Austral , Vírus da Doença Equina Africana/genética , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Ceratopogonidae/virologia , Cavalos , Genética Reversa , Vacinas Atenuadas/imunologia , Vacinas Sintéticas
4.
Vet Res ; 49(1): 105, 2018 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-30309390

RESUMO

African horse sickness (AHS) is caused by multiple serotypes of the dsRNA AHSV and is a major scourge of domestic equids in Africa. While there are well established commercial live attenuated vaccines produced in South Africa, risks associated with these have encouraged attempts to develop new and safer recombinant vaccines. Previously, we reported on the immunogenicity of a plant-produced AHS serotype 5 virus-like particle (VLP) vaccine, which stimulated high titres of AHS serotype 5-specific neutralizing antibodies in guinea pigs. Here, we report a similar response to the vaccine in horses. This is the first report demonstrating the safety and immunogenicity of plant-produced AHS VLPs in horses.


Assuntos
Vírus da Doença Equina Africana , Doença Equina Africana/prevenção & controle , Anticorpos Antivirais/imunologia , Nicotiana/metabolismo , Vacinas Virais/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Cavalos , Vacinas Atenuadas/imunologia
5.
Plant Biotechnol J ; 16(2): 442-450, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28650085

RESUMO

African horse sickness (AHS) is a debilitating and often fatal viral disease affecting horses in much of Africa, caused by the dsRNA orbivirus African horse sickness virus (AHSV). Vaccination remains the single most effective weapon in combatting AHS, as there is no treatment for the disease apart from good animal husbandry. However, the only commercially available vaccine is a live-attenuated version of the virus (LAV). The threat of outbreaks of the disease outside its endemic region and the fact that the LAV is not licensed for use elsewhere in the world, have spurred attempts to develop an alternative safer, yet cost-effective recombinant vaccine. Here, we report the plant-based production of a virus-like particle (VLP) AHSV serotype five candidate vaccine by Agrobacterium tumefaciens-mediated transient expression of all four capsid proteins in Nicotiana benthamiana using the cowpea mosaic virus-based HyperTrans (CPMV-HT) and associated pEAQ plant expression vector system. The production process is fast and simple, scalable, economically viable, and most importantly, guinea pig antiserum raised against the vaccine was shown to neutralize live virus in cell-based assays. To our knowledge, this is the first report of AHSV VLPs produced in plants, which has important implications for the containment of, and fight against the spread of, this deadly disease.


Assuntos
Vírus da Doença Equina Africana/imunologia , Agrobacterium tumefaciens/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Cobaias , Vacinas Virais/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA