Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Med Sci (Paris) ; 40(3): 267-274, 2024 Mar.
Artigo em Francês | MEDLINE | ID: mdl-38520102

RESUMO

The characterization of the structural and functional organization of eukaryotic cells has revealed the membrane compartments and machinery required for vesicular protein transport. Most proteins essential for intercellular communication contain an N-terminal signal sequence enabling them to be incorporated into the biosynthetic or conventional secretory pathway, in which proteins are sequentially transported through the endoplasmic reticulum (ER) and the Golgi apparatus. However, major research studies have shown the existence of alternative secretory routes that are independent of the ER-Golgi and designated as unconventional secretory pathways. These pathways involve a large number of players that may divert specific compartments from their primary function in favor of secretory roles. The comprehensive description of these processes is therefore of utmost importance to unveil how proteins secreted through these alternative pathways control cell homeostasis or contribute to disease development.


Title: Sécrétion non conventionnelle - Nouvelles perspectives dans le trafic des protéines. Abstract: L'étude de l'organisation structurale et fonctionnelle des cellules eucaryotes a révélé les compartiments membranaires ainsi que la machinerie nécessaires au trafic vésiculaire des protéines. La plupart des protéines essentielles à la communication intercellulaire contiennent une séquence signal leur permettant d'être incorporées dans la voie de sécrétion conventionnelle, par laquelle les protéines sont transportées séquentiellement dans le réticulum endoplasmique (RE) puis l'appareil de Golgi. Cependant, les cellules eucaryotes sont également dotées de voies de sécrétion alternatives ou voies de sécrétion non conventionnelles, qui mettent en jeu de nombreux acteurs susceptibles de détourner certains compartiments de leurs fonctions principales au profit de fonctions sécrétoires.


Assuntos
Células Eucarióticas , Proteínas , Humanos , Transporte Proteico , Proteínas/metabolismo , Células Eucarióticas/metabolismo , Retículo Endoplasmático/metabolismo , Complexo de Golgi , Via Secretória
2.
Mol Ther Methods Clin Dev ; 27: 295-308, 2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36320410

RESUMO

Wolfram syndrome (WS) is a rare neurodegenerative disease resulting in deafness, optic atrophy, diabetes, and neurological disorders. Currently, no treatment is available for patients. The mutated gene, WFS1, encodes an endoplasmic reticulum (ER) protein, Wolframin. We previously reported that Wolframin regulated the ER-mitochondria Ca2+ transfer and mitochondrial activity by protecting NCS1 from degradation in patients' fibroblasts. We relied on a zebrafish model of WS, the wfs1ab KO line, to analyze the functional and behavioral impact of NCS1 overexpression as a novel therapeutic strategy. The wfs1ab KO line showed an increased locomotion in the visual motor and touch-escape responses. The absence of wfs1 did not impair the cellular unfolded protein response, in basal or tunicamycin-induced ER stress conditions. In contrast, metabolic analysis showed an increase in mitochondrial respiration in wfs1ab KO larvae. Interestingly, overexpression of NCS1 using mRNA injection restored the alteration of mitochondrial respiration and hyperlocomotion. Taken together, these data validated the wfs1ab KO zebrafish line as a pertinent experimental model of WS and confirmed the therapeutic potential of NCS1. The wfs1ab KO line therefore appeared as an efficient model to identify novel therapeutic strategies, such as gene or pharmacological therapies targeting NCS1 that will correct or block WS symptoms.

3.
Int J Mol Sci ; 23(15)2022 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-35955718

RESUMO

Reg-1α/lithostathine, a protein mainly associated with the digestive system, was previously shown to be overexpressed in the pre-clinical stages of Alzheimer's disease. In vitro, the glycosylated protein was reported to form fibrils at physiological pH following the proteolytic action of trypsin. However, the nature of the protease able to act in the central nervous system is unknown. In the present study, we showed that Reg-1α can be cleaved in vitro by calpain-2, the calcium activated neutral protease, overexpressed in neurodegenerative diseases. Using chemical crosslinking experiments, we found that the two proteins can interact with each other. Identification of the cleavage site using mass spectrometry, between Gln4 and Thr5, was found in agreement with the in silico prediction of the calpain cleavage site, in a position different from the one reported for trypsin, i.e., Arg11-Ile12 peptide bond. We showed that the cleavage was impeded by the presence of the neighboring glycosylation of Thr5. Moreover, in vitro studies using electron microscopy showed that calpain-cleaved protein does not form fibrils as observed after trypsin cleavage. Collectively, our results show that calpain-2 cleaves Reg-1α in vitro, and that this action is not associated with fibril formation.


Assuntos
Doença de Alzheimer , Calpaína , Doença de Alzheimer/metabolismo , Calpaína/metabolismo , Glicosilação , Humanos , Litostatina/metabolismo , Tripsina/metabolismo
4.
Hum Mol Genet ; 31(16): 2711-2727, 2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-35325133

RESUMO

Wolfram syndrome (WS) is a rare genetic disease characterized by diabetes, optic atrophy and deafness. Patients die at 35 years of age, mainly from respiratory failure or dysphagia. Unfortunately, there is no treatment to block the progression of symptoms and there is an urgent need for adequate research models. Here, we report on the phenotypical characterization of two loss-of-function zebrafish mutant lines: wfs1aC825X and wfs1bW493X. We observed that wfs1a deficiency altered the size of the ear and the retina of the fish. We also documented a decrease in the expression level of unfolded protein response (UPR) genes in basal condition and in stress condition, i.e. after tunicamycin treatment. Interestingly, both mutants lead to a decrease in their visual function measured behaviorally. These deficits were associated with a decrease in the expression level of UPR genes in basal and stress conditions. Interestingly, basal, ATP-linked and maximal mitochondrial respirations were transiently decreased in the wfs1b mutant. Taken together, these zebrafish lines highlight the critical role of wfs1a and wfs1b in UPR, mitochondrial function and visual physiology. These models will be useful tools to better understand the cellular function of Wfs1 and to develop novel therapeutic approaches for WS.


Assuntos
Atrofia Óptica , Síndrome de Wolfram , Animais , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Mutação , Atrofia Óptica/genética , Fenótipo , Síndrome de Wolfram/genética , Síndrome de Wolfram/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
5.
Sci Transl Med ; 14(631): eabh3763, 2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-35138910

RESUMO

The Wolfram syndrome is a rare autosomal recessive disease affecting many organs with life-threatening consequences; currently, no treatment is available. The disease is caused by mutations in the WSF1 gene, coding for the protein wolframin, an endoplasmic reticulum (ER) transmembrane protein involved in contacts between ER and mitochondria termed as mitochondria-associated ER membranes (MAMs). Inherited mutations usually reduce the protein's stability, altering its homeostasis and ultimately reducing ER to mitochondria calcium ion transfer, leading to mitochondrial dysfunction and cell death. In this study, we found that activation of the sigma-1 receptor (S1R), an ER-resident protein involved in calcium ion transfer, could counteract the functional alterations of MAMs due to wolframin deficiency. The S1R agonist PRE-084 restored calcium ion transfer and mitochondrial respiration in vitro, corrected the associated increased autophagy and mitophagy, and was able to alleviate the behavioral symptoms observed in zebrafish and mouse models of the disease. Our findings provide a potential therapeutic strategy for treating Wolfram syndrome by efficiently boosting MAM function using the ligand-operated S1R chaperone. Moreover, such strategy might also be relevant for other degenerative and mitochondrial diseases involving MAM dysfunction.


Assuntos
Receptores sigma , Síndrome de Wolfram , Animais , Cálcio/metabolismo , Feminino , Humanos , Masculino , Camundongos , Receptores sigma/agonistas , Peixe-Zebra/metabolismo , Receptor Sigma-1
6.
Int J Mol Sci ; 22(20)2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34681705

RESUMO

The sigma-1 receptor (S1R) is a highly conserved transmembrane protein highly enriched in mitochondria-associated endoplasmic reticulum (ER) membranes, where it interacts with several partners involved in ER-mitochondria Ca2+ transfer, activation of the ER stress pathways, and mitochondria function. We characterized a new S1R deficient zebrafish line and analyzed the impact of S1R deficiency on visual, auditory and locomotor functions. The s1r+25/+25 mutant line showed impairments in visual and locomotor functions compared to s1rWT. The locomotion of the s1r+25/+25 larvae, at 5 days post fertilization, was increased in the light and dark phases of the visual motor response. No deficit was observed in acoustic startle response. A critical role of S1R was shown in ER stress pathways and mitochondrial activity. Using qPCR to analyze the unfolded protein response genes, we observed that loss of S1R led to decreased levels of IRE1 and PERK-related effectors and increased over-expression of most of the effectors after a tunicamycin challenge. Finally, S1R deficiency led to alterations in mitochondria bioenergetics with decreased in basal, ATP-linked and non-mitochondrial respiration and following tunicamycin challenge. In conclusion, this new zebrafish model confirmed the importance of S1R activity on ER-mitochondria communication. It will be a useful tool to further analyze the physiopathological roles of S1R.


Assuntos
Mitocôndrias/metabolismo , Receptores sigma/metabolismo , Resposta a Proteínas não Dobradas , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/metabolismo , Animais , Animais Geneticamente Modificados/metabolismo , Sistemas CRISPR-Cas/genética , Edição de Genes , Larva/fisiologia , Locomoção , Proteínas de Membrana/metabolismo , Fenótipo , Receptores sigma/química , Receptores sigma/genética , Peixe-Zebra/crescimento & desenvolvimento , Proteínas de Peixe-Zebra/química , Proteínas de Peixe-Zebra/genética , Receptor Sigma-1
7.
Neuropharmacology ; 186: 108467, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33516737

RESUMO

Huntington's disease (HD) is due to a mutation in the gene encoding for Huntingtin protein generating polyQ domain extension. Mutant Htt (mHtt) leads to important dysfunction of the BDNF/TrkB signaling. We previously described the 23aa Htt fragment P42, that attenuated the pathological phenotypes induced by mHtt. We reported that, in the R6/2 mouse model of HD, P42 rescued striatal TrkB level but marginally increased cortical BDNF. In the present study, our aim was to address P42 neuroprotection in presence of an external input of BDNF. We combined P42 administration with environmental enrichment (EE), induced by training in the Hamlet test. We examined the consequences of P42 + EE combination on different phenotypes in R6/2 HD mice: motor and cognitive performances, recorded at early and late pathological stages, and analyzed aggregated mHtt and BDNF levels in forebrain structures. Hamlet exploration (i.e., entries in Run, Hide, Eat, Drink and Interact houses) was gradually impaired in R6/2 mice, but maintained by P42 treatment until week 8. Topographic memory alteration measured at week 7 was attenuated by P42. Motor performances (rotarod) were significantly ameliorated by the P42 + EE combination until late stage (week 12). The P42 + EE combination also significantly decreased aggregated Htt levels in the hippocampus, striatum and cortex, and increased BDNF levels in the cortex and striatum. We concluded that combination between P42 treatment, known to increase TrkB striatal expression, and a BDNF-enhancing therapy such as EE efficiently delayed HD pathology in R6/2 mice. Use of dual therapies might be a pertinent strategy to fight neurodegeneration in HD.


Assuntos
Meio Ambiente , Proteína Huntingtina , Doença de Huntington/tratamento farmacológico , Doença de Huntington/fisiopatologia , Fragmentos de Peptídeos/administração & dosagem , Sequência de Aminoácidos , Animais , Terapia Combinada/métodos , Feminino , Proteína Huntingtina/genética , Doença de Huntington/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Camundongos Transgênicos , Fragmentos de Peptídeos/genética , Desempenho Psicomotor/efeitos dos fármacos , Desempenho Psicomotor/fisiologia , Resultado do Tratamento
8.
Int J Neuropsychopharmacol ; 24(2): 142-157, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-32977336

RESUMO

BACKGROUND: Current therapies in Alzheimer's disease (AD), including Memantine, have proven to be only symptomatic but not curative or disease modifying. Fluoroethylnormemantine (FENM) is a structural analogue of Memantine, functionalized with a fluorine group that allowed its use as a positron emission tomography tracer. We here analyzed FENM neuroprotective potential in a pharmacological model of AD compared with Memantine. METHODS: Swiss mice were treated intracerebroventricularly with aggregated Aß 25-35 peptide and examined after 1 week in a battery of memory tests (spontaneous alternation, passive avoidance, object recognition, place learning in the water-maze, topographic memory in the Hamlet). Toxicity induced in the mouse hippocampus or cortex was analyzed biochemically or morphologically. RESULTS: Both Memantine and FENM showed symptomatic anti-amnesic effects in Aß 25-35-treated mice. Interestingly, FENM was not amnesic when tested alone at 10 mg/kg, contrarily to Memantine. Drugs injected once per day prevented Aß 25-35-induced memory deficits, oxidative stress (lipid peroxidation, cytochrome c release), inflammation (interleukin-6, tumor necrosis factor-α increases; glial fibrillary acidic protein and Iba1 immunoreactivity in the hippocampus and cortex), and apoptosis and cell loss (Bcl-2-associated X/B-cell lymphoma 2 ratio; cell loss in the hippocampus CA1 area). However, FENM effects were more robust than observed with Memantine, with significant attenuations vs the Aß 25-35-treated group. CONCLUSIONS: FENM therefore appeared as a potent neuroprotective drug in an AD model, with a superior efficacy compared with Memantine and an absence of direct amnesic effect at higher doses. These results open the possibility to use the compound at more relevant dosages than those actually proposed in Memantine treatment for AD.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Amnésia/tratamento farmacológico , Memantina/análogos & derivados , Memantina/farmacologia , Transtornos da Memória/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/prevenção & controle , Amnésia/induzido quimicamente , Amnésia/prevenção & controle , Peptídeos beta-Amiloides/farmacologia , Animais , Comportamento Animal/efeitos dos fármacos , Modelos Animais de Doenças , Masculino , Memantina/administração & dosagem , Transtornos da Memória/induzido quimicamente , Camundongos , Camundongos Endogâmicos C57BL , Fármacos Neuroprotetores/administração & dosagem , Fragmentos de Peptídeos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA