Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
Front Cell Infect Microbiol ; 13: 1113528, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37065199

RESUMO

The Gram-negative bacterium Neisseria meningitidis, which causes meningitis in humans, has been demonstrated to manipulate or alter host signalling pathways during infection of the central nervous system (CNS). However, these complex signalling networks are not completely understood. We investigate the phosphoproteome of an in vitro model of the blood-cerebrospinal fluid barrier (BCSFB) based on human epithelial choroid plexus (CP) papilloma (HIBCPP) cells during infection with the N. meningitidis serogroup B strain MC58 in presence and absence of the bacterial capsule. Interestingly, our data demonstrates a stronger impact on the phosphoproteome of the cells by the capsule-deficient mutant of MC58. Using enrichment analyses, potential pathways, molecular processes, biological processes, cellular components and kinases were determined to be regulated as a consequence of N. meningitidis infection of the BCSFB. Our data highlight a variety of protein regulations that are altered during infection of CP epithelial cells with N. meningitidis, with the regulation of several pathways and molecular events only being detected after infection with the capsule-deficient mutant. Mass spectrometry proteomics data are available via ProteomeXchange with identifier PXD038560.


Assuntos
Neisseria meningitidis , Humanos , Neisseria meningitidis/fisiologia , Plexo Corióideo/microbiologia , Células Epiteliais/microbiologia , Barreira Hematoencefálica/microbiologia , Linhagem Celular Tumoral
3.
Cell Tissue Res ; 392(2): 393-412, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36781482

RESUMO

Endothelial cells play a major part in the regulation of vascular permeability and angiogenesis. According to their duty to fit the needs of the underlying tissue, endothelial cells developed different subtypes with specific endothelial microdomains as caveolae, fenestrae and transendothelial channels which regulate nutrient exchange, leukocyte migration, and permeability. These microdomains can exhibit diaphragms that are formed by the endothelial cell-specific protein plasmalemma vesicle-associated protein (PLVAP), the only known protein component of these diaphragms. Several studies displayed an involvement of PLVAP in diseases as cancer, traumatic spinal cord injury, acute ischemic brain disease, transplant glomerulopathy, Norrie disease and diabetic retinopathy. Besides an upregulation of PLVAP expression within these diseases, pro-angiogenic or pro-inflammatory responses were observed. On the other hand, loss of PLVAP in knockout mice leads to premature mortality due to disrupted homeostasis. Generally, PLVAP is considered as a major factor influencing the permeability of endothelial cells and, finally, to be involved in the regulation of vascular permeability. Following these observations, PLVAP is debated as a novel therapeutic target with respect to the different vascular beds and tissues. In this review, we highlight the structure and functions of PLVAP in different endothelial types in health and disease.


Assuntos
Retinopatia Diabética , Células Endoteliais , Animais , Encéfalo/metabolismo , Permeabilidade Capilar/fisiologia , Proteínas de Transporte/metabolismo , Células Endoteliais/metabolismo , Proteínas de Membrana/metabolismo , Humanos
4.
Int J Mol Sci ; 21(10)2020 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-32466312

RESUMO

Bacteria evolved many strategies to survive and persist within host cells. Secretion of bacterial effectors enables bacteria not only to enter the host cell but also to manipulate host gene expression to circumvent clearance by the host immune response. Some effectors were also shown to evade the nucleus to manipulate epigenetic processes as well as transcription and mRNA procession and are therefore classified as nucleomodulins. Others were shown to interfere downstream with gene expression at the level of mRNA stability, favoring either mRNA stabilization or mRNA degradation, translation or protein stability, including mechanisms of protein activation and degradation. Finally, manipulation of innate immune signaling and nutrient supply creates a replicative niche that enables bacterial intracellular persistence and survival. In this review, we want to highlight the divergent strategies applied by intracellular bacteria to evade host immune responses through subversion of host gene expression via bacterial effectors. Since these virulence proteins mimic host cell enzymes or own novel enzymatic functions, characterizing their properties could help to understand the complex interactions between host and pathogen during infections. Additionally, these insights could propose potential targets for medical therapy.


Assuntos
Infecções Bacterianas/genética , Interações Hospedeiro-Patógeno , Fatores de Virulência/metabolismo , Animais , Bactérias/patogenicidade , Infecções Bacterianas/imunologia , Infecções Bacterianas/microbiologia , Epigênese Genética , Humanos , Estabilidade Proteica , Estabilidade de RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA