Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Neurochem ; 159(6): 1028-1044, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34359098

RESUMO

Modulation of sensory perception by homeostatic feedback from physiological states is central to innate purposive behaviors. Olfaction is an important predictive modality for feeding-related behaviors and its modulation has been associated with hunger-satiety states. However, the mechanisms mapping internal states to chemosensory processing in order to modify behavior are poorly understood. In the zebrafish olfactory epithelium, a subset of olfactory sensory neurons (OSNs) and the terminal nerve projections express neuropeptide Y (NPY). Using a combination of neuronal activity and behavioral evaluation, we find that NPY signaling in the peripheral olfactory system of zebrafish is correlated with its nutritional state and is both necessary and sufficient for the olfactory perception of food-related odorants. NPY activity dynamically modulates the microvillar OSN activation thresholds and acts cooperatively with amino acid signaling resulting in a switch-like increase in OSN sensitivity in starved animals. We suggest that cooperative activation of phospholipase C by convergent signaling from NPY and amino acid receptors is central to this heightened sensitivity. This study provides ethologically relevant, physiological evidence for NPY signaling in the modulation of OSN sensitivity to food-associated amino acid cues. We demonstrate sensory gating directly at the level of OSNs and identify a novel mechanistic framework for tuning olfactory sensitivity to prevailing energy states. Cover Image for this issue: https://doi.org/10.1111/jnc.15091.


Assuntos
Sinais (Psicologia) , Ingestão de Alimentos/fisiologia , Neuropeptídeo Y/biossíntese , Estado Nutricional/fisiologia , Mucosa Olfatória/metabolismo , Neurônios Receptores Olfatórios/metabolismo , Animais , Animais Geneticamente Modificados , Feminino , Humanos , Masculino , Neuropeptídeo Y/análise , Mucosa Olfatória/química , Neurônios Receptores Olfatórios/química , Peixe-Zebra
2.
Epigenomes ; 3(2)2019 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-34968232

RESUMO

In addition to the genetic variations, recent evidence has shown that DNA methylation of both 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC) underlies the pathogenesis of pediatric cancer. Given the high mortality rate, there is an urgent need to study the mechanisms contributing to the pathogenicity of pediatric cancer. Over the past decades, next-generation sequencing (NGS) has enabled us to perform genome-wide screening to study the complex regulatory mechanisms of 5mC and 5hmC underlying pediatric tumorigenesis. To shed light on recent developments on pediatric cancer predisposition and tumor progression, here we discuss the role of both genome-wide and locus-specific dysregulation of 5mC and 5hmC in hematopoiesis malignancy and neuroblastoma, the most common types of pediatric cancer, together with their therapeutic potential.

3.
J R Soc Interface ; 12(113): 20150899, 2015 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-26609067

RESUMO

We present a novel method for the unsupervised discovery of behavioural motifs in larval Drosophila melanogaster and Caenorhabditis elegans. A motif is defined as a particular sequence of postures that recurs frequently. The animal's changing posture is represented by an eigenshape time series, and we look for motifs in this time series. To find motifs, the eigenshape time series is segmented, and the segments clustered using spline regression. Unlike previous approaches, our method can classify sequences of unequal duration as the same motif. The behavioural motifs are used as the basis of a probabilistic behavioural annotator, the eigenshape annotator (ESA). Probabilistic annotation avoids rigid threshold values and allows classification uncertainty to be quantified. We apply eigenshape annotation to both larval Drosophila and C. elegans and produce a good match to hand annotation of behavioural states. However, we find many behavioural events cannot be unambiguously classified. By comparing the results with ESA of an artificial agent's behaviour, we argue that the ambiguity is due to greater continuity between behavioural states than is generally assumed for these organisms.


Assuntos
Comportamento Animal/fisiologia , Caenorhabditis elegans/fisiologia , Modelos Biológicos , Animais , Ciências Biocomportamentais , Drosophila melanogaster , Larva/fisiologia
4.
Elife ; 42015 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-26077825

RESUMO

Behavioral strategies employed for chemotaxis have been described across phyla, but the sensorimotor basis of this phenomenon has seldom been studied in naturalistic contexts. Here, we examine how signals experienced during free olfactory behaviors are processed by first-order olfactory sensory neurons (OSNs) of the Drosophila larva. We find that OSNs can act as differentiators that transiently normalize stimulus intensity-a property potentially derived from a combination of integral feedback and feed-forward regulation of olfactory transduction. In olfactory virtual reality experiments, we report that high activity levels of the OSN suppress turning, whereas low activity levels facilitate turning. Using a generalized linear model, we explain how peripheral encoding of olfactory stimuli modulates the probability of switching from a run to a turn. Our work clarifies the link between computations carried out at the sensory periphery and action selection underlying navigation in odor gradients.


Assuntos
Quimiotaxia/fisiologia , Drosophila/fisiologia , Neurônios Receptores Olfatórios/fisiologia , Orientação/fisiologia , Células Receptoras Sensoriais/fisiologia , Olfato/fisiologia , Potenciais de Ação/fisiologia , Algoritmos , Animais , Difusão , Larva/fisiologia , Modelos Teóricos , Atividade Motora/fisiologia , Odorantes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA