Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 9(7): eade7804, 2023 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-36800417

RESUMO

At presynaptic active zones (AZs), conserved scaffold protein architectures control synaptic vesicle (SV) release by defining the nanoscale distribution and density of voltage-gated Ca2+ channels (VGCCs). While AZs can potentiate SV release in the minutes range, we lack an understanding of how AZ scaffold components and VGCCs engage into potentiation. We here establish dynamic, intravital single-molecule imaging of endogenously tagged proteins at Drosophila AZs undergoing presynaptic homeostatic potentiation. During potentiation, the numbers of α1 VGCC subunit Cacophony (Cac) increased per AZ, while their mobility decreased and nanoscale distribution compacted. These dynamic Cac changes depended on the interaction between Cac channel's intracellular carboxyl terminus and the membrane-close amino-terminal region of the ELKS-family protein Bruchpilot, whose distribution compacted drastically. The Cac-ELKS/Bruchpilot interaction was also needed for sustained AZ potentiation. Our single-molecule analysis illustrates how the AZ scaffold couples to VGCC nanoscale distribution and dynamics to establish a state of sustained potentiation.


Assuntos
Proteínas de Drosophila , Sinapses , Animais , Sinapses/metabolismo , Drosophila/metabolismo , Vesículas Sinápticas/metabolismo , Proteínas de Drosophila/metabolismo , Transmissão Sináptica
2.
J Cell Sci ; 132(6)2019 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-30745339

RESUMO

Protein scaffolds at presynaptic active zone membranes control information transfer at synapses. For scaffold biogenesis and maintenance, scaffold components must be safely transported along axons. A spectrum of kinases has been suggested to control transport of scaffold components, but direct kinase-substrate relationships and operational principles steering phosphorylation-dependent active zone protein transport are presently unknown. Here, we show that extensive phosphorylation of a 150-residue unstructured region at the N-terminus of the highly elongated Bruchpilot (BRP) active zone protein is crucial for ordered active zone precursor transport in Drosophila Point mutations that block SRPK79D kinase-mediated phosphorylation of the BRP N-terminus interfered with axonal transport, leading to BRP-positive axonal aggregates that also contain additional active zone scaffold proteins. Axonal aggregates formed only in the presence of non-phosphorylatable BRP isoforms containing the SRPK79D-targeted N-terminal stretch. We assume that specific active zone proteins are pre-assembled in transport packages and are thus co-transported as functional scaffold building blocks. Our results suggest that transient post-translational modification of a discrete unstructured domain of the master scaffold component BRP blocks oligomerization of these building blocks during their long-range transport.


Assuntos
Transporte Axonal/fisiologia , Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Fosforilação , Terminações Pré-Sinápticas/metabolismo , Sinapses/metabolismo
3.
PLoS One ; 12(4): e0175894, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28437454

RESUMO

In honeybees, age-associated structural modifications can be observed in the mushroom bodies. Prominent examples are the synaptic complexes (microglomeruli, MG) in the mushroom body calyces, which were shown to alter their size and density with age. It is not known whether the amount of intracellular synaptic proteins in the MG is altered as well. The presynaptic protein Bruchpilot (BRP) is localized at active zones and is involved in regulating the probability of neurotransmitter release in the fruit fly, Drosophila melanogaster. Here, we explored the localization of the honeybee BRP (Apis mellifera BRP, AmBRP) in the bee brain and examined age-related changes in the AmBRP abundance in the central bee brain and in microglomeruli of the mushroom body calyces. We report predominant AmBRP localization near the membrane of presynaptic boutons within the mushroom body MG. The relative amount of AmBRP was increased in the central brain of two-week old bees whereas the amount of Synapsin, another presynaptic protein involved in the regulation of neurotransmitter release, shows an increase during the first two weeks followed by a decrease. In addition, we demonstrate an age-associated modulation of AmBRP located near the membrane of presynaptic boutons within MG located in mushroom body calyces where sensory input is conveyed to mushroom body intrinsic neurons. We discuss that the observed age-associated AmBRP modulation might be related to maturation processes or to homeostatic mechanisms that might help to maintain synaptic functionality in old animals.


Assuntos
Envelhecimento/metabolismo , Abelhas/metabolismo , Proteínas de Insetos/metabolismo , Corpos Pedunculados/metabolismo , Neurônios/metabolismo , Animais , Encéfalo/metabolismo , Terminações Pré-Sinápticas/metabolismo , Sinapsinas/metabolismo
4.
Nat Commun ; 6: 8362, 2015 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-26471740

RESUMO

Assembly and maturation of synapses at the Drosophila neuromuscular junction (NMJ) depend on trans-synaptic neurexin/neuroligin signalling, which is promoted by the scaffolding protein Syd-1 binding to neurexin. Here we report that the scaffold protein spinophilin binds to the C-terminal portion of neurexin and is needed to limit neurexin/neuroligin signalling by acting antagonistic to Syd-1. Loss of presynaptic spinophilin results in the formation of excess, but atypically small active zones. Neuroligin-1/neurexin-1/Syd-1 levels are increased at spinophilin mutant NMJs, and removal of single copies of the neurexin-1, Syd-1 or neuroligin-1 genes suppresses the spinophilin-active zone phenotype. Evoked transmission is strongly reduced at spinophilin terminals, owing to a severely reduced release probability at individual active zones. We conclude that presynaptic spinophilin fine-tunes neurexin/neuroligin signalling to control active zone number and functionality, thereby optimizing them for action potential-induced exocytosis.


Assuntos
Moléculas de Adesão Celular Neuronais/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas dos Microfilamentos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Sinapses/metabolismo , Animais , Drosophila , Feminino , Proteínas Ativadoras de GTPase/metabolismo , Masculino , Domínios PDZ , Sinapses/ultraestrutura
5.
PLoS Comput Biol ; 11(9): e1004407, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26367029

RESUMO

Synaptic vesicle fusion is mediated by SNARE proteins forming in between synaptic vesicle (v-SNARE) and plasma membrane (t-SNARE), one of which is Syntaxin-1A. Although exocytosis mainly occurs at active zones, Syntaxin-1A appears to cover the entire neuronal membrane. By using STED super-resolution light microscopy and image analysis of Drosophila neuro-muscular junctions, we show that Syntaxin-1A clusters are more abundant and have an increased size at active zones. A computational particle-based model of syntaxin cluster formation and dynamics is developed. The model is parametrized to reproduce Syntaxin cluster-size distributions found by STED analysis, and successfully reproduces existing FRAP results. The model shows that the neuronal membrane is adjusted in a way to strike a balance between having most syntaxins stored in large clusters, while still keeping a mobile fraction of syntaxins free or in small clusters that can efficiently search the membrane or be traded between clusters. This balance is subtle and can be shifted toward almost no clustering and almost complete clustering by modifying the syntaxin interaction energy on the order of only 1 kBT. This capability appears to be exploited at active zones. The larger active-zone syntaxin clusters are more stable and provide regions of high docking and fusion capability, whereas the smaller clusters outside may serve as flexible reserve pool or sites of spontaneous ectopic release.


Assuntos
Modelos Biológicos , Sinapses/química , Sinapses/metabolismo , Vesículas Sinápticas/química , Vesículas Sinápticas/metabolismo , Sintaxina 1/química , Sintaxina 1/metabolismo , Animais , Biologia Computacional , Drosophila , Processamento de Imagem Assistida por Computador , Larva/química , Larva/metabolismo , Microscopia
6.
Acta Crystallogr F Struct Biol Commun ; 71(Pt 1): 34-40, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-25615965

RESUMO

Rab GTPases belong to the large family of Ras proteins. They act as key regulators of membrane organization and intracellular trafficking. Functionally, they act as switches. In the active GTP-bound form they can bind to effector proteins to facilitate the delivery of transport vesicles. Upon stimulation, the GTP is hydrolyzed and the Rab proteins undergo conformational changes in their switch regions. This study focuses on Rab2 and Rab3 from Drosophila melanogaster. Whereas Rab2 is involved in vesicle transport between the Golgi and the endoplasmatic reticulum, Rab3 is a key player in exocytosis, and in the synapse it is involved in the assembly of the presynaptic active zone. Here, high-resolution crystal structures of Rab2 and Rab3 in complex with GMPPNP and Mg2+ are presented. In the structure of Rab3 a modified cysteine residue is observed with an enigmatic electron density attached to its thiol function.


Assuntos
Proteínas de Drosophila/química , Drosophila melanogaster/enzimologia , Guanilil Imidodifosfato/química , Proteína rab2 de Ligação ao GTP/química , Proteínas rab3 de Ligação ao GTP/química , Sequência de Aminoácidos , Animais , Domínio Catalítico , Cristalografia por Raios X , Modelos Moleculares , Dados de Sequência Molecular , Ligação Proteica , Estrutura Secundária de Proteína , Homologia Estrutural de Proteína
7.
Elife ; 32014 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-25392983

RESUMO

CIDE-N domains mediate interactions between the DNase Dff40/CAD and its inhibitor Dff45/ICAD. In this study, we report that the CIDE-N protein Drep-2 is a novel synaptic protein important for learning and behavioral adaptation. Drep-2 was found at synapses throughout the Drosophila brain and was strongly enriched at mushroom body input synapses. It was required within Kenyon cells for normal olfactory short- and intermediate-term memory. Drep-2 colocalized with metabotropic glutamate receptors (mGluRs). Chronic pharmacological stimulation of mGluRs compensated for drep-2 learning deficits, and drep-2 and mGluR learning phenotypes behaved non-additively, suggesting that Drep 2 might be involved in effective mGluR signaling. In fact, Drosophila fragile X protein mutants, shown to benefit from attenuation of mGluR signaling, profited from the elimination of drep-2. Thus, Drep-2 is a novel regulatory synaptic factor, probably intersecting with metabotropic signaling and translational regulation.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Memória , Sinapses/metabolismo , Animais , Apoptose , Condicionamento Psicológico , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Espectrometria de Massas , Corpos Pedunculados/metabolismo , Mutação , Neurônios/citologia , Neurônios/metabolismo , Fenótipo , Densidade Pós-Sináptica/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Olfato
8.
Nat Protoc ; 9(12): 2796-808, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25393777

RESUMO

Drosophila is widely used as a genetic model in questions of development, cellular function and disease. Genetic screens in flies have proven to be incredibly powerful in identifying crucial components for synapse formation and function, particularly in the case of the presynaptic release machinery. Although modern biochemical methods can identify individual proteins and lipids (and their binding partners), they have typically been excluded from use in Drosophila for technical reasons. To bridge this essential gap between genetics and biochemistry, we developed a fractionation method to isolate various parts of the synaptic machinery from Drosophila, thus allowing it to be studied in unprecedented biochemical detail. This is only possible because our protocol has unique advantages in terms of enriching and preserving endogenous protein complexes. The procedure involves decapitation of adult flies, homogenization and differential centrifugation of fly heads, which allow subsequent purification of presynaptic (and to a limited degree postsynaptic) components. It is designed to require only a rudimentary knowledge of biochemical fractionation, and it takes ∼3.5 h. The yield is typically 4 mg of synaptic membrane protein per gram of Drosophila heads.


Assuntos
Sistema Nervoso Central/química , Centrifugação/métodos , Fracionamento Químico/métodos , Drosophila/química , Sinapses/química , Animais , Proteínas de Drosophila/química , Proteínas de Drosophila/isolamento & purificação , Cabeça , Reprodutibilidade dos Testes , Transmissão Sináptica , Sinaptossomos/química , Fluxo de Trabalho
9.
Cell Rep ; 7(5): 1417-1425, 2014 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-24882013

RESUMO

Neurotransmission involves the exo-endocytic cycling of synaptic vesicles (SVs) within nerve terminals. Exocytosis is facilitated by a cytomatrix assembled at the active zone (AZ). The precise spatial and functional relationship between exocytic fusion of SVs at AZ membranes and endocytic SV retrieval is unknown. Here, we identify the scaffold G protein coupled receptor kinase 2 interacting (GIT) protein as a component of the AZ-associated cytomatrix and as a regulator of SV endocytosis. GIT1 and its D. melanogaster ortholog, dGIT, are shown to directly associate with the endocytic adaptor stonin 2/stoned B. In Drosophila dgit mutants, stoned B and synaptotagmin levels are reduced and stoned B is partially mislocalized. Moreover, dgit mutants show morphological and functional defects in SV recycling. These data establish a presynaptic role for GIT in SV recycling and suggest a connection between the AZ cytomatrix and the endocytic machinery.


Assuntos
Proteínas de Drosophila/metabolismo , Reguladores de Proteínas de Ligação ao GTP/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Terminações Pré-Sinápticas/metabolismo , Vesículas Sinápticas/metabolismo , Animais , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Drosophila/metabolismo , Proteínas de Drosophila/genética , Endocitose , Exocitose , Reguladores de Proteínas de Ligação ao GTP/genética , Proteínas Ativadoras de GTPase/genética , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Ligação Proteica , Sinaptotagminas/genética , Sinaptotagminas/metabolismo
10.
J Cell Biol ; 202(4): 667-83, 2013 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-23960145

RESUMO

Synaptic vesicles (SVs) fuse at a specialized membrane domain called the active zone (AZ), covered by a conserved cytomatrix. How exactly cytomatrix components intersect with SV release remains insufficiently understood. We showed previously that loss of the Drosophila melanogaster ELKS family protein Bruchpilot (BRP) eliminates the cytomatrix (T bar) and declusters Ca(2+) channels. In this paper, we explored additional functions of the cytomatrix, starting with the biochemical identification of two BRP isoforms. Both isoforms alternated in a circular array and were important for proper T-bar formation. Basal transmission was decreased in isoform-specific mutants, which we attributed to a reduction in the size of the readily releasable pool (RRP) of SVs. We also found a corresponding reduction in the number of SVs docked close to the remaining cytomatrix. We propose that the macromolecular architecture created by the alternating pattern of the BRP isoforms determines the number of Ca(2+) channel-coupled SV release slots available per AZ and thereby sets the size of the RRP.


Assuntos
Proteínas do Citoesqueleto/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citologia , Drosophila melanogaster/metabolismo , Vesículas Sinápticas/metabolismo , Animais
11.
Nat Neurosci ; 15(9): 1219-26, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22864612

RESUMO

Synapse formation and maturation requires bidirectional communication across the synaptic cleft. The trans-synaptic Neurexin-Neuroligin complex can bridge this cleft, and severe synapse assembly deficits are found in Drosophila melanogaster neuroligin (Nlg1, dnlg1) and neurexin (Nrx-1, dnrx) mutants. We show that the presynaptic active zone protein Syd-1 interacts with Nrx-1 to control synapse formation at the Drosophila neuromuscular junction. Mutants in Syd-1 (RhoGAP100F, dsyd-1), Nrx-1 and Nlg1 shared active zone cytomatrix defects, which were nonadditive. Syd-1 and Nrx-1 formed a complex in vivo, and Syd-1 was important for synaptic clustering and immobilization of Nrx-1. Consequently, postsynaptic clustering of Nlg1 was affected in Syd-1 mutants, and in vivo glutamate receptor incorporation was changed in Syd-1, Nrx-1 and Nlg1 mutants. Stabilization of nascent Syd-1-Liprin-α (DLiprin-α) clusters, important to initialize active zone formation, was Nlg1 dependent. Thus, cooperation between Syd-1 and Nrx-1-Nlg1 seems to orchestrate early assembly processes between pre- and postsynaptic membranes, promoting avidity of newly forming synaptic scaffolds.


Assuntos
Moléculas de Adesão Celular Neuronais/fisiologia , Proteínas de Drosophila/fisiologia , Proteínas Ativadoras de GTPase/fisiologia , Terminações Pré-Sinápticas/fisiologia , Sinapses/fisiologia , Animais , Caenorhabditis elegans , Moléculas de Adesão Celular/fisiologia , Moléculas de Adesão Celular Neuronais/genética , Clonagem Molecular , Drosophila , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Proteínas Ativadoras de GTPase/genética , Imuno-Histoquímica , Imunoprecipitação , Peptídeos e Proteínas de Sinalização Intracelular , Microscopia Eletrônica , Junção Neuromuscular/fisiologia , Domínios PDZ/genética , Fosfoproteínas/metabolismo , Receptores de Glutamato/fisiologia , Saccharomyces cerevisiae/genética
12.
Science ; 334(6062): 1565-9, 2011 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-22174254

RESUMO

The molecular machinery mediating the fusion of synaptic vesicles (SVs) at presynaptic active zone (AZ) membranes has been studied in detail, and several essential components have been identified. AZ-associated protein scaffolds are viewed as only modulatory for transmission. We discovered that Drosophila Rab3-interacting molecule (RIM)-binding protein (DRBP) is essential not only for the integrity of the AZ scaffold but also for exocytotic neurotransmitter release. Two-color stimulated emission depletion microscopy showed that DRBP surrounds the central Ca(2+) channel field. In drbp mutants, Ca(2+) channel clustering and Ca(2+) influx were impaired, and synaptic release probability was drastically reduced. Our data identify RBP family proteins as prime effectors of the AZ scaffold that are essential for the coupling of SVs, Ca(2+) channels, and the SV fusion machinery.


Assuntos
Proteínas de Transporte/fisiologia , Proteínas de Drosophila/fisiologia , Neurotransmissores/metabolismo , Terminações Pré-Sinápticas/fisiologia , Animais , Canais de Cálcio/fisiologia , Drosophila , Proteínas de Drosophila/genética , Masculino , Mutação , Sinapses
13.
J Neurosci ; 30(43): 14340-5, 2010 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-20980589

RESUMO

At presynaptic active zones (AZs), the frequently observed tethering of synaptic vesicles to an electron-dense cytomatrix represents a process of largely unknown functional significance. Here, we identified a hypomorphic allele, brpnude, lacking merely the last 1% of the C-terminal amino acids (17 of 1740) of the active zone protein Bruchpilot. In brpnude, electron-dense bodies were properly shaped, though entirely bare of synaptic vesicles. While basal glutamate release was unchanged, paired-pulse and sustained stimulation provoked depression. Furthermore, rapid recovery following sustained release was slowed. Our results causally link, with intramolecular precision, the tethering of vesicles at the AZ cytomatrix to synaptic depression.


Assuntos
Proteínas de Drosophila/genética , Terminações Pré-Sinápticas/fisiologia , Vesículas Sinápticas/genética , Vesículas Sinápticas/fisiologia , Animais , Sequência de Bases , Canais de Cálcio/metabolismo , Citoplasma/metabolismo , Drosophila , Estimulação Elétrica , Eletrofisiologia , Cinética , Larva , Microscopia Eletrônica , Dados de Sequência Molecular , Mutação , Técnicas de Patch-Clamp
14.
J Cell Biol ; 188(4): 565-79, 2010 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-20176924

RESUMO

Active zones (AZs) are presynaptic membrane domains mediating synaptic vesicle fusion opposite postsynaptic densities (PSDs). At the Drosophila neuromuscular junction, the ELKS family member Bruchpilot (BRP) is essential for dense body formation and functional maturation of AZs. Using a proteomics approach, we identified Drosophila Syd-1 (DSyd-1) as a BRP binding partner. In vivo imaging shows that DSyd-1 arrives early at nascent AZs together with DLiprin-alpha, and both proteins localize to the AZ edge as the AZ matures. Mutants in dsyd-1 form smaller terminals with fewer release sites, and release less neurotransmitter. The remaining AZs are often large and misshapen, and ectopic, electron-dense accumulations of BRP form in boutons and axons. Furthermore, glutamate receptor content at PSDs increases because of excessive DGluRIIA accumulation. The AZ protein DSyd-1 is needed to properly localize DLiprin-alpha at AZs, and seems to control effective nucleation of newly forming AZs together with DLiprin-alpha. DSyd-1 also organizes trans-synaptic signaling to control maturation of PSD composition independently of DLiprin-alpha.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Terminações Pré-Sinápticas/metabolismo , Homologia de Sequência de Aminoácidos , Potenciais Sinápticos , Animais , Drosophila melanogaster/embriologia , Drosophila melanogaster/ultraestrutura , Embrião não Mamífero/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Locomoção/fisiologia , Longevidade/fisiologia , Mutação/genética , Junção Neuromuscular/metabolismo , Junção Neuromuscular/ultraestrutura , Fenótipo , Fosfoproteínas/metabolismo , Terminações Pré-Sinápticas/ultraestrutura , Ligação Proteica , Transporte Proteico , Proteômica , Receptores de Glutamato/metabolismo
15.
J Cell Biol ; 186(1): 129-45, 2009 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-19596851

RESUMO

Synaptic vesicles fuse at active zone (AZ) membranes where Ca(2+) channels are clustered and that are typically decorated by electron-dense projections. Recently, mutants of the Drosophila melanogaster ERC/CAST family protein Bruchpilot (BRP) were shown to lack dense projections (T-bars) and to suffer from Ca(2+) channel-clustering defects. In this study, we used high resolution light microscopy, electron microscopy, and intravital imaging to analyze the function of BRP in AZ assembly. Consistent with truncated BRP variants forming shortened T-bars, we identify BRP as a direct T-bar component at the AZ center with its N terminus closer to the AZ membrane than its C terminus. In contrast, Drosophila Liprin-alpha, another AZ-organizing protein, precedes BRP during the assembly of newly forming AZs by several hours and surrounds the AZ center in few discrete punctae. BRP seems responsible for effectively clustering Ca(2+) channels beneath the T-bar density late in a protracted AZ formation process, potentially through a direct molecular interaction with intracellular Ca(2+) channel domains.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Sinapses/metabolismo , Animais , Anticorpos Monoclonais , Canais de Cálcio/metabolismo , Compartimento Celular , Proteínas de Drosophila/química , Drosophila melanogaster/ultraestrutura , Mapeamento de Epitopos , Epitopos/ultraestrutura , Peptídeos e Proteínas de Sinalização Intracelular , Junção Neuromuscular/metabolismo , Junção Neuromuscular/ultraestrutura , Fosfoproteínas/metabolismo , Ligação Proteica , Transporte Proteico , Relação Estrutura-Atividade , Sinapses/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA