Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Ecol Evol ; 14(2): e10916, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38304264

RESUMO

Using acoustics to survey for bats has increased as the need for data on increasingly rare species has also increased. We set out to better understand the difference between mist netting and acoustic detection probabilities between these two methods for the little brown bat (Myotis lucifugus), a species highly impacted by white-nose syndrome and currently considered for federal listing in the United States. We also analyzed occupancy relationships with local and landcover variables. We surveyed 15 sites using mist netting paired with an acoustic recorder for multiple nights to estimate detection probability of this species. We also deployed acoustic recorders at another 73 sites. We found that detection rates for mist netting were very low but increased with day of year and decreased from proximity to water. Acoustic surveys had higher detection rates, but there was an approximately 30% likelihood of false-positive detections. At the mean distance to water and day of year, acoustic surveys had a detection rate 55 times higher than mist netting. There were not significant factors influencing occupancy of little brown bats, only a slight positive relationship between forested largest patch, landscape patch richness and forest basal area. Given the declines in little brown bat populations since white-nose syndrome, it is even more critical that we consider the very low detection rate of mist netting compared to acoustic surveys.

2.
Ecol Appl ; 32(7): e2679, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35588285

RESUMO

For many avian species, spatial migration patterns remain largely undescribed, especially across hemispheric extents. Recent advancements in tracking technologies and high-resolution species distribution models (i.e., eBird Status and Trends products) provide new insights into migratory bird movements and offer a promising opportunity for integrating independent data sources to describe avian migration. Here, we present a three-stage modeling framework for estimating spatial patterns of avian migration. First, we integrate tracking and band re-encounter data to quantify migratory connectivity, defined as the relative proportions of individuals migrating between breeding and nonbreeding regions. Next, we use estimated connectivity proportions along with eBird occurrence probabilities to produce probabilistic least-cost path (LCP) indices. In a final step, we use generalized additive mixed models (GAMMs) both to evaluate the ability of LCP indices to accurately predict (i.e., as a covariate) observed locations derived from tracking and band re-encounter data sets versus pseudo-absence locations during migratory periods and to create a fully integrated (i.e., eBird occurrence, LCP, and tracking/band re-encounter data) spatial prediction index for mapping species-specific seasonal migrations. To illustrate this approach, we apply this framework to describe seasonal migrations of 12 bird species across the Western Hemisphere during pre- and postbreeding migratory periods (i.e., spring and fall, respectively). We found that including LCP indices with eBird occurrence in GAMMs generally improved the ability to accurately predict observed migratory locations compared to models with eBird occurrence alone. Using three performance metrics, the eBird + LCP model demonstrated equivalent or superior fit relative to the eBird-only model for 22 of 24 species-season GAMMs. In particular, the integrated index filled in spatial gaps for species with over-water movements and those that migrated over land where there were few eBird sightings and, thus, low predictive ability of eBird occurrence probabilities (e.g., Amazonian rainforest in South America). This methodology of combining individual-based seasonal movement data with temporally dynamic species distribution models provides a comprehensive approach to integrating multiple data types to describe broad-scale spatial patterns of animal movement. Further development and customization of this approach will continue to advance knowledge about the full annual cycle and conservation of migratory birds.


Assuntos
Migração Animal , Aves , Animais , Estações do Ano , América do Sul
3.
Glob Chang Biol ; 28(7): 2221-2235, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35060249

RESUMO

One of the most pressing questions in ecology and conservation centers on disentangling the relative impacts of concurrent global change drivers, climate and land-use/land-cover (LULC), on biodiversity. Yet studies that evaluate the effects of both drivers on species' winter distributions remain scarce, hampering our ability to develop full-annual-cycle conservation strategies. Additionally, understanding how groups of species differentially respond to climate versus LULC change is vital for efforts to enhance bird community resilience to future environmental change. We analyzed long-term changes in winter occurrence of 89 species across nine bird groups over a 90-year period within the eastern United States using Audubon Christmas Bird Count (CBC) data. We estimated variation in occurrence probability of each group as a function of spatial and temporal variation in winter climate (minimum temperature, cumulative precipitation) and LULC (proportion of group-specific and anthropogenic habitats within CBC circle). We reveal that spatial variation in bird occurrence probability was consistently explained by climate across all nine species groups. Conversely, LULC change explained more than twice the temporal variation (i.e., decadal changes) in bird occurrence probability than climate change on average across groups. This pattern was largely driven by habitat-constrained species (e.g., grassland birds, waterbirds), whereas decadal changes in occurrence probabilities of habitat-unconstrained species (e.g., forest passerines, mixed habitat birds) were equally explained by both climate and LULC changes over the last century. We conclude that climate has generally governed the winter occurrence of avifauna in space and time, while LULC change has played a pivotal role in driving distributional dynamics of species with limited and declining habitat availability. Effective land management will be critical for improving species' resilience to climate change, especially during a season of relative resource scarcity and critical energetic trade-offs.


Assuntos
Mudança Climática , Ecossistema , Biodiversidade , Dinâmica Populacional , Estações do Ano , Estados Unidos
4.
Sci Rep ; 7(1): 14280, 2017 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-29079749

RESUMO

During long-distance fall migrations, nocturnally migrating Swainson's Thrushes often stop on the northern Gulf of Mexico coast before flying across the Gulf. To minimize energetic costs, trans-Gulf migrants should stop over when they encounter crosswinds or headwinds, and depart with supportive tailwinds. However, time constrained migrants should be less selective, balancing costs of headwinds with benefits of continuing their migrations. To test the hypotheses that birds select supportive winds and that selectivity is mediated by seasonal time constraints, we examined whether local winds affected Swainson's Thrushes' arrival and departure at Ft. Morgan, Alabama, USA at annual, seasonal, and nightly time scales. Additionally, migrants could benefit from forecasting future wind conditions, crossing on nights when winds are consistently supportive across the Gulf, thereby avoiding the potentially lethal consequences of depleting their energetic reserves over water. To test whether birds forecast, we developed a movement model, calculated to what extent departure winds were predictive of future Gulf winds, and tested whether birds responded to predictability. Swainson's Thrushes were only slightly selective and did not appear to forecast. By following the simple rule of avoiding only the strongest headwinds at departure, Swainson's Thrushes could survive the 1500 km flight between Alabama and Veracruz, Mexico.


Assuntos
Migração Animal , Aves Canoras , Vento , Alabama , Animais , Tomada de Decisões , Previsões , Golfo do México , Modelos Teóricos , Método de Monte Carlo , Fotoperíodo , Estações do Ano
5.
Proc Natl Acad Sci U S A ; 112(46): E6331-8, 2015 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-26578793

RESUMO

Approximately two thirds of migratory songbirds in eastern North America negotiate the Gulf of Mexico (GOM), where inclement weather coupled with no refueling or resting opportunities can be lethal. However, decisions made when navigating such features and their consequences remain largely unknown due to technological limitations of tracking small animals over large areas. We used automated radio telemetry to track three songbird species (Red-eyed Vireo, Swainson's Thrush, Wood Thrush) from coastal Alabama to the northern Yucatan Peninsula (YP) during fall migration. Detecting songbirds after crossing ∼1,000 km of open water allowed us to examine intrinsic (age, wing length, fat) and extrinsic (weather, date) variables shaping departure decisions, arrival at the YP, and crossing times. Large fat reserves and low humidity, indicative of beneficial synoptic weather patterns, favored southward departure across the Gulf. Individuals detected in the YP departed with large fat reserves and later in the fall with profitable winds, and flight durations (mean = 22.4 h) were positively related to wind profit. Age was not related to departure behavior, arrival, or travel time. However, vireos negotiated the GOM differently than thrushes, including different departure decisions, lower probability of detection in the YP, and longer crossing times. Defense of winter territories by thrushes but not vireos and species-specific foraging habits may explain the divergent migratory behaviors. Fat reserves appear extremely important to departure decisions and arrival in the YP. As habitat along the GOM is degraded, birds may be limited in their ability to acquire fat to cross the Gulf.


Assuntos
Tecido Adiposo , Migração Animal/fisiologia , Aves Canoras/fisiologia , Tempo (Meteorologia) , Animais , Golfo do México
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA