Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Gels ; 9(12)2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38131976

RESUMO

The main object of this work was to characterize the structure and properties of laboratory-made fish gelatin from cod skin in comparison with known commercial gelatins of fish and mammalian origin. This is one way we can contribute to the World Food Program and characterize foodstuff resources from alternative natural sources. Our research was based on the combination of an expanded set of complementary physical-chemical methods to study the similarities and distinctions of hydrogels from traditional and novel gelatin sources from underused marine resources. In this work, we have compared the morphology, supramolecular structure and colloid properties of two commercial (mammalian and fish) gelatins with gelatin we extracted from cold-water cod skin in laboratory conditions. The obtained results are novel, showing that our laboratory-produced fish gelatin is much closer to the mammalian one in terms of such parameters as thermal stability and strength of structural network under temperature alterations. Especially interesting are our experimental observations comparing both fish gelatins: it was shown that the laboratory-extracted cod gelatin is essentially more thermally stable compared to its commercial analogue, being even closer in its rheological properties to the mammalian one.

2.
Gels ; 9(9)2023 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-37754396

RESUMO

In this review, today's state of the art in the rheology of gels and transition through the yield stress of yielding liquids is discussed. Gels are understood as soft viscoelastic multicomponent solids that are in the incomplete phase separation state, which, under the action of external mechanical forces, do not transit into a fluid state but rupture like any solid material. Gels can "melt" (again, like any solids) due to a change in temperature or variation in the environment. In contrast to this type of rheology, yielding liquids (sometimes not rigorously referred to as "gels", especially in relation to colloids) can exist in a solid-like (gel-like) state and become fluid above some defined stress and time conditions (yield stress). At low stresses, their behavior is quite similar to that of permanent solid gels, including the frequency-independent storage modulus. The gel-to-sol transition considered in colloid chemistry is treated as a case of yielding. However, in many cases, the yield stress cannot be assumed to be a physical parameter since the solid-to-liquid transition happens in time and is associated with thixotropic effects. In this review, special attention is paid to various time effects. It is also stressed that plasticity is not equivalent to flow since (irreversible) plastic deformations are determined by stress but do not continue over time. We also discuss some typical errors, difficulties, and wrong interpretations of experimental data in studies of yielding liquids.

3.
Polymers (Basel) ; 15(10)2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37242828

RESUMO

The phase behavior of aqueous mixtures of fish gelatin (FG) and sodium alginate (SA) and complex coacervation phenomena depending on pH, ionic strength, and cation type (Na+, Ca2+) were studied by turbidimetric acid titration, UV spectrophotometry, dynamic light scattering, transmission electron microscopy and scanning electron microscopy for different mass ratios of sodium alginate and gelatin (Z = 0.01-1.00). The boundary pH values determining the formation and dissociation of SA-FG complexes were measured, and we found that the formation of soluble SA-FG complexes occurs in the transition from neutral (pHc) to acidic (pHφ1) conditions. Insoluble complexes formed below pHφ1 separate into distinct phases, and the phenomenon of complex coacervation is thus observed. Formation of the highest number of insoluble SA-FG complexes, based on the value of the absorption maximum, is observed at рHopt and results from strong electrostatic interactions. Then, visible aggregation occurs, and dissociation of the complexes is observed when the next boundary, pHφ2, is reached. As Z increases in the range of SA-FG mass ratios from 0.01 to 1.00, the boundary values of рНc, рHφ1, рHopt, and рHφ2 become more acidic, shifting from 7.0 to 4.6, from 6.8 to 4.3, from 6.6 to 2.8, and from 6.0 to 2.7, respectively. An increase in ionic strength leads to suppression of the electrostatic interaction between the FG and SA molecules, and no complex coacervation is observed at NaCl and CaCl2 concentrations of 50 to 200 mM.

4.
Polymers (Basel) ; 15(7)2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-37050343

RESUMO

This review provides an analysis of experimental results on the study of alkaline heterogeneous deacetylation of chitin obtained by the authors and also published in the literature. A detailed analysis of the reaction kinetics was carried out considering the influence of numerous factors: reaction reversibility, crystallinity and porosity of chitin, changes in chitin morphology during washing, alkali concentration, diffusion of hydroxide ions, and hydration of reacting particles. A mechanism for the chitin deacetylation reaction is proposed, taking into account its kinetic features in which the decisive role is assigned to the effects of hydration. It has been shown that the rate of chitin deacetylation increases with a decrease in the degree of hydration of hydroxide ions in a concentrated alkali solution. When the alkali concentration is less than the limit of complete hydration, the reaction practically does not occur. Hypotheses have been put forward to explain the decrease in the rate of the reaction in the second flat portion of the kinetic curve. The first hypothesis is the formation of "free" water, leading to the hydration of chitin molecules and a decrease in the reaction rate. The second hypothesis postulates the formation of a stable amide anion of chitosan, which prevents the nucleophilic attack of the chitin macromolecule by hydroxide ions.

5.
Polymers (Basel) ; 15(5)2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36904484

RESUMO

Structural aspects of polysaccharide hydrogels based on sodium alginate and divalent cations Ba2+, Ca2+, Sr2+, Cu2+, Zn2+, Ni2+ and Mn2+ was studied using data on hydrogel elemental composition and combinatorial analysis of the primary structure of alginate chains. It was shown that the elemental composition of hydrogels in the form of freezing dried microspheres gives information on the structure of junction zones in the polysaccharide hydrogel network, the degree of filling of egg-box cells by cations, the type and magnitude of the interaction of cations with alginate chains, the most preferred types of alginate egg-box cells for cation binding and the nature of alginate dimers binding in junction zones. It was ascertained that metal-alginate complexes have more complicated organization than was previously desired. It was revealed that in metal-alginate hydrogels, the number of cations of various metals per C12 block may be less than the limiting theoretical value equal to 1 for completely filled cells. In the case of alkaline earth metals and zinc, this number is equal to 0.3 for calcium, 0.6 for barium and zinc and 0.65-0.7 for strontium. We have determined that in the presence of transition metals copper, nickel and manganese, a structure similar to an egg-box is formed with completely filled cells. It was determined that in nickel-alginate and copper-alginate microspheres, the cross-linking of alginate chains and formation of ordered egg-box structures with completely filled cells are carried out by hydrated metal complexes with complicated composition. It was found that an additional characteristic of complex formation with manganese cations is the partial destruction of alginate chains. It has been established that the existence of unequal binding sites of metal ions with alginate chains can lead to the appearance of ordered secondary structures due to the physical sorption of metal ions and their compounds from the environment. It was shown that hydrogels based on calcium alginate are most promising for absorbent engineering in environmental and other modern technologies.

6.
Int J Mol Sci ; 23(22)2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36430697

RESUMO

Protein isolates were obtained from marine hydrobionts by the method of isoelectric precipitation with a preliminary stage of protein alkaline solubilisation. Northern blue whiting was chosen as the raw material. Various technological modes of the solubilisation stage were used: the temperature of the reaction mixture was 4 or 20 °C, and the duration was 4 or 16 h. The yield of the product was 44-45% with a high content of the main component (protein) equal to about 95%. It has been shown that a decrease in the temperature and duration of the alkaline solubilisation stage provides the production of protein isolates with good technological properties, a low solubility, high swelling and high emulsifying ability, necessary for its use in the production of functional food products, including therapeutic and prophylactic effects. These technological properties are explained by a change in the composition and structure of the protein, the change being an increase in the content of essential amino acids and the proportion of α-helices in the polypeptide chain. The main patterns obtained will be used to obtain protein isolates from marine molluscs.


Assuntos
Aminoácidos Essenciais , Proteínas , Temperatura , Proteínas/química , Solubilidade
7.
Polymers (Basel) ; 14(20)2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36297925

RESUMO

In this work, by means of complex physicochemical methods the structural features of a composite κ-carrageenan-gelatin system were studied in comparison with initial protein gel. The correlation between the morphology of hydrogels and their mechanical properties was demonstrated through the example of changes in their rheological characteristics. The experiments carried out with PXRD, SAXS, AFM and rheology approaches gave new information on the structure and mechanical performance of κ-carrageenan-gelatin hydrogel. The combination of PXRD, SAXS and AFM results showed that the morphological structures of individual components were not observed in the composite protein-polysaccharide hydrogels. The results of the mechanical testing of initial gelatin and engineered κ-carrageenan-gelatin gel showed the substantially denser parking of polymer chains in the composite system due to a significant increase in intermolecular protein-polysaccharide contacts. Close results were indirectly followed from the SAXS estimations-the driving force for the formation of the common supramolecular structural arrangement of proteins and polysaccharides was the increase in the density of network of macromolecular chains entanglements; therefore, an increase in the energy costs was necessary to change the conformational rearrangements of the studied system. This increase in the macromolecular arrangement led to the growth of the supramolecular associate size and the growth of interchain physical bonds. This led to an increase in the composite gel plasticity, whereas the enlargement of scattering particles made the novel gel system not only more rigid, but also more fragile.

8.
Polymers (Basel) ; 14(14)2022 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-35890554

RESUMO

Gelatin, due to its gelling and stabilizing properties, is one of the widely used biopolymers in biotechnology, medicine, pharmaceuticals, and the food industry. One way to modify the characteristics of gelatin is molecular modification by forming non-covalent polyelectrolyte complexes with polysaccharides based on the self-organization of supramolecular structures. This review summarizes recent advances in the study of various types and the role of intermolecular interactions in the formation of polysaccharide-gelatin complexes, and conformational changes in gelatin, with the main focus on data obtained by spectroscopic methods: UV, FT-IR, and 1H NMR spectroscopy. In the discussion, the main focus is on the complexing polysaccharides of marine origin-sodium alginate, κ-carrageenan, and chitosan. The prospects for creating polysaccharide-gelatin complexes with desired physicochemical properties are outlined.

9.
Polymers (Basel) ; 14(12)2022 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-35745922

RESUMO

Hydrogels, three-dimensional hydrophilic water-insoluble polymer networks having mechanical properties inherent for solids, have attracted continuous research attention over a long time period. Here, we studied the structure and properties of hydrogel based on gelatin, κ-carrageenan and CNTs using the combination of SAXS, PXRD, AFM microscopy, SEM and rheology methods. We have shown that the integration of polysaccharide and protein in the composite hydrogel leads to suppression of their individual structural features and homogenization of two macromolecular components into a single structural formation. According to obtained SAXS results, we observed the supramolecular complex, which includes both polysaccharide and protein components associated with each other. It was determined that hydrogel structure formed in the initial solution state (dispersion) retains hydrogel supramolecular structure under its cooling up to gel state. The sizes of dense cores of these polyelectrolyte complexes (PEC) slightly decrease in the gel state in comparison with PEC water dispersion. The introduction of CNTs to hydrogel does not principally change the type of supramolecular structure and common structural tendencies observed for dispersion and gel states of the system. It was shown that carbon nanotubes embedded in hydrogel act as the supplementary template for formation of the three-dimensional net, giving additional mechanical strengthening to the studied system.

10.
Polymers (Basel) ; 14(4)2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35215662

RESUMO

In recent years, there has been increased interest in the production of gelatin from alternative sources, such as raw fish materials. Traditionally, gelatin is obtained using an acidic or alkaline treatment. However, these methods have some disadvantages, such as the long times for processing raw materials and the use of large amounts of water and chemicals. Furthermore, milder processing regimes are required for producing fish gelatin. Enzymes could be the solution for improving the technology of fish gelatin production, due to their specificity and ability to increase the rate of collagen digestion. In this work, samples of gelatin from cod skin were obtained using enzymes of bacterial (protosubtilin) and animal (pancreatin) origins. The use of enzymes reduced the duration of extraction by 40%, and the yield of the final product was increased from 51% to 58-60%. The dependence of the contents of the main components of the secondary structure of gelatin and its rheological and thermal properties on molecular weight was also established. In this study, the gelatins obtained without enzymes and with protosubtilin were shown to have the most desirable characteristics, namely of the highest molecular weights and the highest proportion of ordered structures.

11.
Polymers (Basel) ; 13(5)2021 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-33673621

RESUMO

Polyelectrolyte complexes of sodium alginate and gelatin obtained from cold-blooded fish were studied for potential application as structure-forming agents in food hydrogels. The mass ratio of sodium alginate to gelatin plays a decisive role in the sol-gel transition and rheological behavior of the complexes. Differences in the sol-gel transition temperature were observed upon heating and cooling, as is typical for such materials. We investigated the characteristics of this transition by measuring the isothermal changes in the elastic modulus over time at a constant frequency and the transition temperature at a range of frequencies. The kinetic nature of this transition depends on the composition of the complexes. A characteristic alginate-gelatin mass ratio is the ratio at which maximum transition temperature as well as elastic modulus and viscosity (rheological parameters) values are obtained; the characteristic mass ratio for these complexes was found to be 0.06. Calculation of the ionic group ratios in the biopolymers that form complexes and comparison of these data with the turbidimetric titration results clarified the origin of these maxima. Measuring the viscoelastic properties and the creep-elastic recoil of the samples allowed us to characterize these materials as viscoelastic media with a viscosity in the order of 103-104 Pa·s and an elastic modulus in the order of 102-103 Pa. These values drastically decrease at a certain stress threshold, which can be treated as the gel strength limit. Therefore, the observed rheological behavior of gels formed by fish gelatin modified with sodium alginate characterizes them as typical viscoelastic soft matter.

12.
Polymers (Basel) ; 12(12)2020 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-33352683

RESUMO

This review considers the main properties of fish gelatin that determine its use in food technologies. A comparative analysis of the amino acid composition of gelatin from cold-water and warm-water fish species, in comparison with gelatin from mammals, which is traditionally used in the food industry, is presented. Fish gelatin is characterized by a reduced content of proline and hydroxyproline which are responsible for the formation of collagen-like triple helices. For this reason, fish gelatin gels are less durable and have lower gelation and melting temperatures than mammalian gelatin. These properties impose significant restrictions on the use of fish gelatin in the technology of gelled food as an alternative to porcine and bovine gelatin. This problem can be solved by modifying the functional characteristics of fish gelatin by adding natural ionic polysaccharides, which, under certain conditions, are capable of forming polyelectrolyte complexes with gelatin, creating additional nodes in the spatial network of the gel.

13.
Polymers (Basel) ; 12(2)2020 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-31991901

RESUMO

General features of rheological properties and structural peculiarities of polyelectrolyte polysaccharide-gelatin complexes were discussed in this paper. Experimental results were obtained for typical complexes, such as -carrageenan-gelatin, chitosan-gelatin and sodium alginate-gelatin complexes. A rheological method allows us to examine the physical state of a complex in aqueous phase and the kinetics of the sol-gel transition and temperature dependences of properties as a result of structural changes. The storage modulus below the gelation temperature is constant, which is a reflection of the solid-like state of a material. The gels of these complexes are usually viscoplastic media. The quantitative values of the rheological parameters depend on the ratio of the components in the complexes. The formation of the structure as a result of strong interactions of the components in the complexes was confirmed by UV and FTIR data and SEM analysis. Interaction with polysaccharides causes a change in the secondary structure of gelatin, i.e., the content of triple helices in an -chain increases. The joint analysis of the structural and rheological characteristics suggests that the formation of additional junctions in the complex gel network results in increases in elasticity and hardening compared with those of the native gelatin.

14.
Polymers (Basel) ; 11(10)2019 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-31640195

RESUMO

Gelatin (G) was extracted from the skin of Atlantic cod at different pH of the aqueous phase (pH 3, 4, 5, 8 and 9) and at a temperature of 50 ± 1 °C. The yield of gelatin (G3, G4, G5, G8, and G9, respectively) was 49-55% of the dry raw material. The influence of extraction pH on the physicochemical and functional properties of gelatin was studied. Sample G5 was characterized by higher protein content (92.8%) while lower protein content was obtained for sample G3 (86.5%) extracted under more aggressive conditions. Analysis of the molecular weight distribution showed the presence of α- and ß-chains as major components; the molecular weight of the samples ranged between 130 and 150 kDa, with sample G5 having the highest molecular weight. IR spectra of all samples had absorption bands characteristic of fish gelatin. The study of the secondary structure demonstrated higher amounts of ordered triple collagen-like helices for G5 extracted under mild conditions. Accordingly, sample G5 formed gels with high values for the storage modulus and gelling and melting temperatures, which decrease as pH changes into acidic or alkaline regions. In addition, the differential scanning calorimetry data showed that G5 had a higher glass transition temperature and melting enthalpy. Thus, cod skin is an excellent source of gelatin with the necessary physicochemical and functional properties, depending on the appropriate choice of aqueous phase pH for the extraction.

15.
Carbohydr Polym ; 169: 117-126, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28504127

RESUMO

The 1H NMR spectroscopy is used to study the kinetics of gelation in the aqueous mixtures of κ-carrageenan with gelatin. The time dependence of NMR signals intensities shows that the kinetics of gel formation consists of classical 'fast' (rate constant k≈6h-1) and 'slow' (k≈1h-1) periods, corresponding to a coil→helix transition and subsequent aggregation of helices. Upon increase of the κ-carrageenan/gelatin (w/w) ratio Z the rate of the fast process slows down by a factor of 1.6-2.4. Further analysis was done by studying the dependence of spin-spin relaxation times of protons of gelatin on Z in the aqueous phase. A qualitative scheme describing hydrogel formation in the complex solution is given. It is hypothesized that at higher concentration of PECs the hydrogel structure network is stabilized by three types of nodes: triple helices of gelatin and intra-/inter-molecular double helices of κ-carrageenan.


Assuntos
Carragenina/química , Gelatina/química , Cinética , Espectroscopia de Prótons por Ressonância Magnética , Água
16.
Carbohydr Polym ; 151: 1152-1161, 2016 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-27474666

RESUMO

The intermolecular interactions between an anionic polysaccharide from the red algae κ-carrageenan and a gelatin polypeptide, forming stoichiometric polysaccharide-polypeptide (bio)polyelectrolyte complexes in the aqueous phase, were examined. The major method of investigation was high-resolution (1)H NMR spectroscopy. Additional data were obtained by UV absorption spectroscopy, light scattering dispersion and capillary viscometry. Experimental data were interpreted in terms of the changing roles of electrostatic interactions, hydrophobic interactions and hydrogen bonds when κ-carrageenan-gelatin complexes are formed. At high temperatures, when biopolymer macromolecules in solution are in the state of random coil, hydrophobic interactions make a major contribution to complex stabilization. At the temperature of gelatin's coil→helix conformational transition and at lower temperatures, electrostatic interactions and hydrogen bonds play a defining role in complex formation. A proposed model of the κ-carrageenan-gelatin complex is discussed.


Assuntos
Carragenina/química , Gelatina/química , Fenômenos Mecânicos , Alginatos/química , Fenômenos Biomecânicos , Quitosana/química , Ácido Glucurônico/química , Ácidos Hexurônicos/química , Ligação de Hidrogênio , Imageamento por Ressonância Magnética , Espectrofotometria Ultravioleta , Viscosidade
17.
Carbohydr Polym ; 138: 265-72, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26794762

RESUMO

The interaction of cationic polysaccharide chitosan and gelatin accompanied by the stoichiometric (bio)polyelectrolyte complexes formation has been studied by the methods of capillary viscometry, UV and FTIR spectroscopy and dispersion of light scattering. Complexes were formed in the aqueous phase, with pH being less than the isoelectric point of gelatin (pIgel). The particle size of the disperse phase increases along with the growth of the relative viscosity in comparison with sols of the individual components-polysaccharide and gelatin. Possible models and mechanism of (bio)polyelectrolyte complexes formation have been discussed. It was shown that the complex formation takes place not only due to the hydrogen bonds, but also due to the electrostatic interactions between the positively charged amino-groups of chitosan and negatively charged amino acid residues (glutamic Glu and aspartic Asp acids) of gelatin.


Assuntos
Quitosana/química , Eletrólitos/química , Gelatina/química , Ligação de Hidrogênio , Espectrofotometria Ultravioleta , Espectroscopia de Infravermelho com Transformada de Fourier , Viscosidade
18.
Adv Colloid Interface Sci ; 222: 172-98, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24970019

RESUMO

This review is devoted to discussing the results of studies of the influence of low-molecular weight surfactant additions on the composition and properties of gelatin adsorbed layers which are spontaneously created at water/air and water/non-polar-liquid interfaces. The interaction of surfactant with gelatin leads to the formation of complexes of variable content in the bulk of the aqueous phase. The composition content is determined by the component ratio and concentration of the added surfactant. The role of surfactants (anionic, cationic, non-ionic) capable of forming complexes with gelatin due to electrostatic and hydrophobic interactions is considered. Analysis of the interfacial layer properties is based on literature information, as well as the own author's data. These data include the results of measuring thermodynamic properties (interface tension), laws of formation (adsorption kinetics and thickness), and rheological properties of the layers, which are considered to be dependent on gelatin and surfactant concentration, pH, and temperature. The evolution of the interfacial layers' properties (with increasing surfactant concentration) is discussed in connection with the properties and content of gelatin-surfactant complexes appearing in the aqueous phase. Such an approach allows us to explain the main peculiarities of the layers' behavior including their stabilizing activity in relation to bilateral foam and emulsion films.

19.
Artigo em Inglês | MEDLINE | ID: mdl-24997869

RESUMO

The Publisher regrets that this article is an accidental duplication of an article that has already been published, http://dx.doi.org/ 10.1016/j.cis.2014.05.001. The duplicate article has therefore been withdrawn.

20.
Adv Colloid Interface Sci ; 151(1-2): 1-23, 2009 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-19683219

RESUMO

The review is devoted to the historical and modern understanding of rheological properties of emulsions in a broad range of concentration. In the limiting case of dilute emulsions, the discussion is based on the analogy and differences in properties of suspensions and emulsions. For concentrated emulsions, the main peculiarities of their rheological behaviour are considered. Different approaches to understand the concentration dependencies of viscosity are presented and compared. The effects of non-Newtonian flow curves and the apparent transition to yielding with increasing concentration of the dispersed phase are discussed. The problem of droplet deformation in shear fields is touched. The highly concentrated emulsions (beyond the limit of closest packing of spherical particles) are treated as visco-plastic media, and the principle features of their rheology (elasticity, yielding, concentration and droplet size dependencies) are considered. A special attention is paid to the problem of shear stability of drops of an internal phase starting from the theory of the single drop behaviour, including approaches for the estimation of drops' stability in concentrated emulsions. Polymer blends are also treated as emulsions, though taking into account their peculiarities due to the coexistence of two interpenetrated phases. Different theoretical models of deformation of polymer drops were discussed bearing in mind the central goal of predictions of the visco-elastic properties of emulsions as functions of the properties of individual components and the interfacial layer. The role of surfactants is discussed from the point of view of stability of emulsions in time and their special influence on the rheology of emulsions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA