Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Cachexia Sarcopenia Muscle ; 15(2): 562-574, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38302863

RESUMO

BACKGROUND: Cancer-associated cachexia (CAC) is a debilitating syndrome associated with poor quality of life and reduced life expectancy of cancer patients. CAC is characterized by unintended body weight reduction due to muscle and adipose tissue loss. A major hallmark of CAC is systemic inflammation. Several non-steroidal anti-inflammatory drugs (NSAIDs) have been suggested for CAC treatment, yet no single medication has proven reliable. R-ketorolac (RK) is the R-enantiomer of a commonly used NSAID. The effect of RK on CAC has not yet been evaluated. METHODS: Ten- to 11-week-old mice were inoculated with C26 or CHX207 cancer cells or vehicle control (phosphate-buffered saline [PBS]). After cachexia onset, 2 mg/kg RK or PBS was administered daily by oral gavage. Body weight, food intake and tumour size were continuously measured. At study endpoints, blood was drawn, mice were sacrificed and tissues were excised. Immune cell abundance was analysed using a Cytek® Aurora spectral flow cytometer. Cyclooxygenase (COX) activity was determined in lung homogenates using a fluorometric kit. Muscle tissues were analysed for mRNA and protein expression by quantitative real-time PCR and western blotting analysis, respectively. Muscle fibre size was determined on histological slides after haematoxylin/eosin staining. RESULTS: Ten-day survival rate of C26-bearing animals was 10% while RK treatment resulted in a 100% survival rate (P = 0.0009). Chemotherapy resulted in a 10% survival rate 14 days after treatment initiation, but all mice survived upon co-medication with RK and cyclophosphamide (P = 0.0001). Increased survival was associated with a protection from body weight loss in C26 (-0.61 ± 1.82 vs. -4.48 ± 2.0 g, P = 0.0004) and CHX207 (-0.49 ± 0.33 vs. -2.49 ± 0.93 g, P = 0.0003) tumour-bearing mice treated with RK, compared with untreated mice. RK ameliorated musculus quadriceps (-1.7 ± 7.1% vs. -27.8 ± 8.3%, P = 0.0007) and gonadal white adipose tissue (-18.8 ± 49% vs. -69 ± 15.6%, P = 0.094) loss in tumour-bearing mice, compared with untreated mice. Mechanistically, RK reduced circulating interleukin-6 (IL-6) concentrations from 334 ± 151 to 164 ± 123 pg/mL (P = 0.047) in C26 and from 93 ± 39 to 35 ± 6 pg/mL (P = 0.0053) in CHX207 tumour-bearing mice. Moreover, RK protected mice from cancer-induced T-lymphopenia (+1.8 ± 42% vs. -49.2 ± 12.1% in treated vs. untreated mice, respectively). RK was ineffective in ameliorating CAC in thymus-deficient nude mice, indicating that the beneficial effect of RK depends on T-cells. CONCLUSIONS: RK improved T-lymphopenia and decreased systemic IL-6 concentrations, resulting in alleviation of cachexia and increased survival of cachexigenic tumour-bearing mice, even under chemotherapy and independent of COX inhibition. Considering its potential, we propose that the use of RK should be investigated in patients suffering from CAC.


Assuntos
Linfopenia , Neoplasias , Humanos , Camundongos , Animais , Caquexia/tratamento farmacológico , Caquexia/etiologia , Caquexia/metabolismo , Cetorolaco/metabolismo , Cetorolaco/farmacologia , Cetorolaco/uso terapêutico , Interleucina-6/metabolismo , Camundongos Nus , Qualidade de Vida , Músculo Esquelético/patologia , Neoplasias/complicações , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Peso Corporal , Anti-Inflamatórios não Esteroides/uso terapêutico , Linfopenia/complicações , Linfopenia/tratamento farmacológico , Linfopenia/patologia
2.
J Thromb Haemost ; 22(5): 1475-1488, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38278417

RESUMO

BACKGROUND: Endoplasmic reticulum (ER) stress is a key feature of lipid-laden macrophages and contributes to the development of atherosclerotic plaques. Blood platelets are known to interact with macrophages and fine-tune effector functions such as inflammasome activation and phagocytosis. However, the effect of platelets on ER stress induction is unknown. OBJECTIVES: The objective of this study is to elucidate the potential of platelets in regulating ER stress in macrophages in vitro. METHODS: Bone marrow-derived macrophages and RAW 264.7 cells were incubated with isolated murine platelets, and ER stress and inflammation markers were determined by reverse transcription-quantitative polymerase chain reaction, Western blotting, and enzyme-linked immunosorbent assay. ER morphology was investigated by electron microscopy. Cell viability, lipid accumulation, and activation were measured by flow cytometry. To gain mechanistic insights, coincubation experiments were performed with platelet decoys/releasates as well as lipopolysaccharide, blocking antibodies, and TLR4 inhibitors. RESULTS: Coincubation of platelets and macrophages led to elevated levels of ER stress markers (BIP, IRE1α, CHOP, and XBP1 splicing) in murine and human macrophages, which led to a pronounced enlargement of the ER. Macrophage ER stress was accompanied by increased release of proinflammatory cytokines and intracellular lipid accumulation, but not cell death. Platelet decoys, but not platelet releasates or lysate from other cells, phenocopied the effect of platelets. Blocking TLR4 inhibited inflammatory activation of macrophages but did not affect ER stress induction by platelet coincubation. CONCLUSION: To our knowledge, this study is the first to demonstrate that platelets induce ER stress and unfolded protein response in macrophages by heat-sensitive membrane proteins, independent of inflammatory activation of macrophages.


Assuntos
Plaquetas , Estresse do Retículo Endoplasmático , Macrófagos , Camundongos Endogâmicos C57BL , Proteínas Serina-Treonina Quinases , Proteína 1 de Ligação a X-Box , Animais , Plaquetas/metabolismo , Macrófagos/metabolismo , Humanos , Camundongos , Células RAW 264.7 , Proteína 1 de Ligação a X-Box/metabolismo , Proteína 1 de Ligação a X-Box/genética , Receptor 4 Toll-Like/metabolismo , Retículo Endoplasmático/metabolismo , Endorribonucleases/metabolismo , Citocinas/metabolismo , Chaperona BiP do Retículo Endoplasmático , Fator de Transcrição CHOP/metabolismo , Transdução de Sinais , Lipopolissacarídeos/farmacologia , Proteínas de Choque Térmico/metabolismo , Metabolismo dos Lipídeos , Mediadores da Inflamação/metabolismo , Inflamação/metabolismo , Sobrevivência Celular
3.
Front Immunol ; 14: 1134661, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36911661

RESUMO

Nuclear factor κB (NF-κB) is a dimeric transcription factor constituted by two of five protein family members. It plays an essential role in inflammation and immunity by regulating the expression of numerous chemokines, cytokines, transcription factors, and regulatory proteins. Since NF-κB is expressed in almost all human cells, it is important to understand its cell type-, tissue-, and stimulus-specific roles as well as its temporal dynamics and disease-specific context. Although NF-κB was discovered more than 35 years ago, many questions are still unanswered, and with the availability of novel technologies such as single-cell sequencing and cell fate-mapping, new fascinating questions arose. In this review, we will summarize current findings on the role of NF-κB in monocytes and macrophages. These innate immune cells show high plasticity and dynamically adjust their effector functions against invading pathogens and environmental cues. Their versatile functions can range from antimicrobial defense and antitumor immune responses to foam cell formation and wound healing. NF-κB is crucial for their activation and balances their phenotypes by finely coordinating transcriptional and epigenomic programs. Thereby, NF-κB is critically involved in inflammasome activation, cytokine release, and cell survival. Macrophage-specific NF-κB activation has far-reaching implications in the development and progression of numerous inflammatory diseases. Moreover, recent findings highlighted the temporal dynamics of myeloid NF-κB activation and underlined the complexity of this inflammatory master regulator. This review will provide an overview of the complex roles of NF-κB in macrophage signal transduction, polarization, inflammasome activation, and cell survival.


Assuntos
Monócitos , NF-kappa B , Humanos , NF-kappa B/metabolismo , Monócitos/metabolismo , Inflamassomos/metabolismo , Transdução de Sinais , Macrófagos , Citocinas/metabolismo
4.
Biochim Biophys Acta Mol Basis Dis ; 1869(3): 166616, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36513287

RESUMO

Atherosclerosis is a chronic, inflammatory disease of the vessel wall where triggered immune cells bind to inflamed endothelium, extravasate and sustain local inflammation. Leukocyte adhesion and extravasation are mediated by adhesion molecules expressed by activated endothelial cells, like intercellular adhesion molecule 1 (ICAM-1). Extracellular adherence protein (Eap) from Staphylococcus aureus binds to a plethora of extracellular matrix proteins, including ICAM-1 and its ligands macrophage-1 antigen (Mac-1, αMß2) and lymphocyte function-associated antigen 1 (LFA-1, αLß2), thereby disrupting the interaction between leukocytes and endothelial cells. We aimed to use Eap to inhibit the interaction of leukocytes with activated endothelial cells in settings of developing and established atherosclerosis in apolipoprotein E (ApoE) deficient mice on high-fat diet. In developing atherosclerosis, Eap treatment reduced circulating platelet-neutrophil aggregates as well as infiltration of T cells and neutrophils into the growing plaque, accompanied by reduced formation of neutrophil extracellular traps (NETs). However, plaque size did not change. Intervention treatment with Eap of already established plaques did not result in cellular or morphological plaque changes, whereas T cell infiltration was increased and thereby again modulated by Eap. We conclude that although Eap leads to cellular changes in developing plaques, clinical implications might be limited as patients are usually treated at a more advanced stage of disease progression. Hence, usage of Eap might be an interesting mechanistic tool for cellular infiltration during plaque development in basic research but not a clinical target.


Assuntos
Aterosclerose , Placa Aterosclerótica , Camundongos , Animais , Molécula 1 de Adesão Intercelular/genética , Staphylococcus aureus/metabolismo , Células Endoteliais/metabolismo , Antígeno-1 Associado à Função Linfocitária/genética , Fenótipo
5.
Antioxidants (Basel) ; 11(7)2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35883769

RESUMO

Dietary polyphenols, which are present in Aronia melanocarpa, have been associated with various beneficial effects on human health including antioxidant, antiviral, and anti-inflammatory activities. We aimed to investigate the immunomodulatory effects of aronia juice polyphenols in a randomized placebo-controlled human intervention study and cell culture experiments. A total of 40 females were asked to consume either 200 mL of aronia juice or a placebo drink for six weeks and were investigated again after a washout period of another six weeks. We observed that only half of the participants tolerated the aronia juice well (Vt) and the other half reported complaints (Vc). The placebo (P) was generally tolerated with one exception (p = 0.003). Plasma polyphenol levels increased significantly in Vt after the intervention (p = 0.024) but did neither in P nor in Vc. Regulatory T cell (Treg) frequencies remained constant in Vt and P during the intervention, whereas Tregs decreased in Vc (p = 0.018). In cell culture, inhibiting effects of ferulic acid (p = 0.0005) and catechin (p = 0.0393) on the differentiation of Tregs were observed as well as reduced activation of CD4-T cells in ferulic acid (p = 0.0072) and aronia juice (p = 0.0163) treated cells. Interestingly, a CD4+CD25-FoxP3+ cell population emerged in vitro in response to aronia juice, but not when testing individual polyphenols. In conclusion, our data strengthen possible individual hormetic effects, the importance of the food matrix for bioactivity, and the need for further investigations on possible impacts of specific physiological features such as the gut microbiota in the context of personalized nutrition.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA