Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Immunother Cancer ; 10(7)2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35858707

RESUMO

BACKGROUND: Bintrafusp alfa (BA) is a bifunctional fusion protein designed for colocalized, simultaneous inhibition of two immunosuppressive pathways, transforming growth factor-ß (TGF-ß) and programmed death-ligand 1 (PD-L1), within the tumor microenvironment (TME). We hypothesized that targeting PD-L1 to the tumor by BA colocalizes the TGF-ß trap (TGF-ßRII) to the TME, enabling it to sequester TGF-ß in the tumor more effectively than systemic TGF-ß blockade, thereby enhancing antitumor activity. METHODS: Multiple technologies were used to characterize the TGF-ß trap binding avidity. BA versus combinations of anti-PD-L1 and TGF-ß trap or the pan-TGF-ß antibody fresolimumab were compared in proliferation and two-way mixed lymphocyte reaction assays. Immunophenotyping of tumor-infiltrating lymphocytes (TILs) and RNA sequencing (RNAseq) analysis assessing stromal and immune landscape following BA or the combination therapy were performed in MC38 tumors. TGF-ß and PD-L1 co-expression and their associated gene signatures in MC38 tumors and human lung carcinoma tissue were studied with single-cell RNAseq (scRNAseq) and immunostaining. BA-induced internalization, degradation, and depletion of TGF-ß were investigated in vitro. RESULTS: BA and fresolimumab had comparable intrinsic binding to TGF-ß1, but there was an ~80× avidity-based increase in binding affinity with BA. BA inhibited cell proliferation in TGF-ß-dependent and PD-L1-expressing cells more potently than TGF-ß trap or fresolimumab. Compared with the combination of anti-PD-L1 and TGF-ß trap or fresolimumab, BA enhanced T cell activation in vitro and increased TILs in MC38 tumors, which correlated with efficacy. BA induced distinct gene expression in the TME compared with the combination therapy, including upregulation of immune-related gene signatures and reduced activities in TGF-ß-regulated pathways, such as epithelial-mesenchymal transition, extracellular matrix deposition, and fibrosis. Regulatory T cells, macrophages, immune cells of myeloid lineage, and fibroblasts were key PD-L1/TGF-ß1 co-expressing cells in the TME. scRNAseq analysis suggested BA modulation of the macrophage phenotype, which was confirmed by histological assessment. PD-L1/TGF-ß1 co-expression was also seen in human tumors. Finally, BA induced TGF-ß1 internalization and degradation in the lysosomes. CONCLUSION: BA more effectively blocks TGF-ß by targeting TGF-ß trap to the tumor via PD-L1 binding. Such colocalized targeting elicits distinct and superior antitumor responses relative to single agent combination therapy.


Assuntos
Neoplasias Pulmonares , Fator de Crescimento Transformador beta , Antígeno B7-H1 , Humanos , Fatores Imunológicos , Receptor de Morte Celular Programada 1 , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta1 , Microambiente Tumoral
2.
Cancer Cell ; 39(10): 1388-1403.e10, 2021 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-34506739

RESUMO

Localized radiotherapy (RT) induces an immunogenic antitumor response that is in part counterbalanced by activation of immune evasive and tissue remodeling processes, e.g., via upregulation of programmed cell death-ligand 1 (PD-L1) and transforming growth factor ß (TGF-ß). We report that a bifunctional fusion protein that simultaneously inhibits TGF-ß and PD-L1, bintrafusp alfa (BA), effectively synergizes with radiotherapy, leading to superior survival in multiple therapy-resistant murine tumor models with poor immune infiltration. The BA + RT (BART) combination increases tumor-infiltrating leukocytes, reprograms the tumor microenvironment, and attenuates RT-induced fibrosis, leading to reconstitution of tumor immunity and regression of spontaneous lung metastases. Consistently, the beneficial effects of BART are in part reversed by depletion of cytotoxic CD8+ T cells. Intriguingly, targeting of the TGF-ß trap to PD-L1+ endothelium and the M2/lipofibroblast-like cell compartment by BA attenuated late-stage RT-induced lung fibrosis. Together, the results suggest that the BART combination has the potential to eradicate therapy-resistant tumors while sparing normal tissue, further supporting its clinical translation.


Assuntos
Inibidores de Checkpoint Imunológico/uso terapêutico , Evasão da Resposta Imune/imunologia , Neoplasias/tratamento farmacológico , Neoplasias/radioterapia , Fator de Crescimento Transformador beta/metabolismo , Animais , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Camundongos , Microambiente Tumoral
3.
Oncoimmunology ; 9(1): 1744921, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32313722

RESUMO

T cell immunoglobulin and mucin domain-3 (TIM-3) is an immune checkpoint that regulates normal immune responses but can be exploited by tumor cells to evade immune surveillance. TIM-3 is primarily expressed on immune cells, particularly on dysfunctional and exhausted T cells, and engagement of TIM-3 with its ligands promotes TIM-3-mediated T cell inhibition. Antagonistic ligand-blocking anti-TIM-3 antibodies have the potential to abrogate T cell inhibition, activate antigen-specific T cells, and enhance anti-tumor immunity. Here we describe M6903, a fully human anti-TIM-3 antibody without effector function and with high affinity and selectivity to TIM-3. We demonstrate that M6903 blocks the binding of TIM-3 to three of its ligands, phosphatidylserine (PtdSer), carcinoembryonic antigen cell adhesion-related molecule 1 (CEACAM1), and galectin 9 (Gal-9). These results are supported by an atomic resolution crystal structure and functional assays, which demonstrate that M6903 monotherapy enhanced T cell activation. This activation was further enhanced by the combination of M6903 with bintrafusp alfa, a bifunctional fusion protein that simultaneously blocks the transforming growth factor-ß (TGF-ß) and programmed death ligand 1 (PD-L1) pathways. M6903 and bintrafusp alfa combination therapy also enhanced anti-tumor efficacy in huTIM-3 knock-in mice, relative to either monotherapy. These in vitro and in vivo data, along with favorable pharmacokinetics in marmoset monkeys, suggest that M6903 as a monotherapy warrants further pre-clinical assessment and that M6903 and bintrafusp alfa may be a promising combination therapy in the clinic.


Assuntos
Receptor Celular 2 do Vírus da Hepatite A , Neoplasias , Animais , Anticorpos Monoclonais , Ativação Linfocitária , Camundongos , Linfócitos T
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA