Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(15)2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37569429

RESUMO

We demonstrate here that highly sensitive in vitro bioassays for FSH, TSH, and PTH can be set up in mouse Leydig Tumor Cells (mLTC), in addition to the normal LH/CG bioassay, after they were transfected with expression vectors encoding the corresponding Gs Protein-Coupled Receptors (GsPCR), such as FSHR, TSHR, or PTHR. Although the ß2 adrenergic receptor is also a GsPCR, its expression in mLTC led to a significant but very low cAMP response compared to those observed with FSH, TSH, or PTH. Similarly, after transfection of the GiPCR MT1 melatonin receptor, we did not observe any inhibitory effect by melatonin of the LH or hCG stimulation. Interestingly, after transfection of mLTC with the human kisspeptin receptor (hKpR), which is a GqPCR, we observed a dose-dependent synergy of 10-12-10-7 M kisspeptin variants with a fixed concentration of 0.3 nM LH or hCG. Without any exogenous receptor transfection, a 2 h preincubation with OT or AVP led to a dose-dependent cAMP response to a fixed dose of LH or hCG. Therefore, highly sensitive in vitro bioassays for various hormones and other GPCR ligands can be set up in mLTC to measure circulating concentrations in only 3-10 µL of blood or other body fluids. Nevertheless, the development of an LHRKO mLTC cell line will be mandatory to obtain strict specificity for these bioassays to eliminate potential cross-reaction with LH or CG.


Assuntos
Kisspeptinas , Receptores do LH , Camundongos , Animais , Humanos , Receptores do LH/genética , Receptores do LH/metabolismo , Kisspeptinas/metabolismo , Ligantes , AMP Cíclico/metabolismo , Transdução de Sinais , Receptores Acoplados a Proteínas G , Hormônio Foliculoestimulante/farmacologia , Hormônio Foliculoestimulante/metabolismo , Tireotropina/metabolismo , Gonadotropina Coriônica/metabolismo
2.
J Neuroendocrinol ; 34(4): e13121, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35355344

RESUMO

The modulation of the kisspeptin system holds promise as a treatment for human reproductive disorders and for managing livestock breeding. The design of analogs has overcome some unfavorable properties of the endogenous ligands. However, for applications requiring a prolongation of drug activity, such as ovulation induction in the ewe during the non-breeding season, additional improvement is required. To this aim, we designed and tested three formulations containing the kisspeptin analog C6. Two were based on polymeric nanoparticles (NP1 and NP2) and the third was based on hydrogels composed of a mixture of cyclodextrin polymers and dextran grafted with alkyl side chains (MD/pCD). Only the MD/pCD formulation prolonged C6 activity, as shown by monitoring luteinizing hormone (LH) plasma concentration (elevation duration 23.4 ± 6.1, 13.7 ± 4.7 and 12.0 ± 2.4 h for MD/pCD, NP1 and NP2, respectively). When compared with the free C6 (15 nmol/ewe), the formulated (MD/pCD) doses of 10, 15 and 30 nmol/ewe, but not the 90 nmol/ewe dose, provided a more gradual release of C6 as shown by an attenuated LH release during the first 6 h post-treatment. When tested during the non-breeding season without progestogen priming, only, the formulated 30 nmol/ewe dose triggered ovulation (50% of ewes). Hence, we showed that a formulation with an adapted action time would improve the efficacy of C6 with respect to inducing ovulation during the non-breeding season. This result suggests that formulations containing a kisspeptin analog might find applications in the management of livestock reproduction but also point to the possibility of their use for the treatment of some human reproductive pathologies.


Assuntos
Anestro , Kisspeptinas , Ovulação , Animais , Feminino , Kisspeptinas/farmacologia , Hormônio Luteinizante , Ovulação/efeitos dos fármacos , Reprodução , Ovinos
3.
Sci Rep ; 10(1): 10654, 2020 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-32606357

RESUMO

The control of ovulation helps guarantee the success of reproduction and as such, contributes to the fitness of a species. In mammals, two types of ovulation are observed: induced and spontaneous ovulation. Recent work on camelids, that are induced ovulators, highlighted the role of a factor present in seminal plasma, beta Nerve Growth Factor (ß-NGF), as the factor that triggers ovulation in a GnRH dependent manner. In the present work, we characterized alpaca ß-NGF (aß-NGF) and its 3D structure and compared it with human recombinant ß-NGF (hß-NGF). We showed that the ß-NGF enriched fraction of alpaca semen and the human recombinant protein, both stimulated spontaneous electrical activity of primary GnRH neurons derived from mouse embryonic olfactory placodes. This effect was dose-dependent and mediated by p75 receptor signaling. P75 receptors were found expressed in vitro by olfactory ensheathing cells (OEC) in close association with GnRH neurons and in vivo by tanycytes in close vicinity to GnRH fibers in adult mouse. Altogether, these results suggested that ß-NGF induced ovulation through an increase in GnRH secretion provoked by a glial dependent P75 mediated mechanism.


Assuntos
Hormônio Liberador de Gonadotropina/metabolismo , Fator de Crescimento Neural/farmacologia , Neurônios/efeitos dos fármacos , Animais , Estimulantes do Sistema Nervoso Central/farmacologia , Corpo Lúteo/efeitos dos fármacos , Corpo Lúteo/metabolismo , Feminino , Humanos , Masculino , Camundongos , Neurônios/metabolismo , Ovulação/efeitos dos fármacos , Ovulação/metabolismo , Indução da Ovulação/métodos , Proteínas Recombinantes/metabolismo , Reprodução/efeitos dos fármacos , Sêmen/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA