Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Glob Chang Biol ; 30(1): e17034, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38273527

RESUMO

Redesigning agrosystems to include more ecological regulations can help feed a growing human population, preserve soils for future productivity, limit dependency on synthetic fertilizers, and reduce agriculture contribution to global changes such as eutrophication and warming. However, guidelines for redesigning cropping systems from natural systems to make them more sustainable remain limited. Synthetizing the knowledge on biogeochemical cycles in natural ecosystems, we outline four ecological systems that synchronize the supply of soluble nutrients by soil biota with the fluctuating nutrient demand of plants. This synchrony limits deficiencies and excesses of soluble nutrients, which usually penalize both production and regulating services of agrosystems such as nutrient retention and soil carbon storage. In the ecological systems outlined, synchrony emerges from plant-soil and plant-plant interactions, eco-physiological processes, soil physicochemical processes, and the dynamics of various nutrient reservoirs, including soil organic matter, soil minerals, atmosphere, and a common market. We discuss the relative importance of these ecological systems in regulating nutrient cycles depending on the pedoclimatic context and on the functional diversity of plants and microbes. We offer ideas about how these systems could be stimulated within agrosystems to improve their sustainability. A review of the latest advances in agronomy shows that some of the practices suggested to promote synchrony (e.g., reduced tillage, rotation with perennial plant cover, crop diversification) have already been tested and shown to be effective in reducing nutrient losses, fertilizer use, and N2 O emissions and/or improving biomass production and soil carbon storage. Our framework also highlights new management strategies and defines the conditions for the success of these nature-based practices allowing for site-specific modifications. This new synthetized knowledge should help practitioners to improve the long-term productivity of agrosystems while reducing the negative impact of agriculture on the environment and the climate.


Assuntos
Ecossistema , Solo , Humanos , Agricultura , Plantas , Carbono
2.
Agron Sustain Dev ; 43(1): 21, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36777236

RESUMO

There is currently an intense debate about the potential for additional organic carbon storage in soil, the strategies by which it may be accomplished and what the actual benefits might be for agriculture and the climate. Controversy forms an essential part of the scientific process, but on the topic of soil carbon storage, it may confuse the agricultural community and the general public and may delay actions to fight climate change. In an attempt to shed light on this topic, the originality of this article lies in its intention to provide a balanced description of contradictory scientific opinions on soil carbon storage and to examine how the scientific community can support decision-making despite the controversy. In the first part, we review and attempt to reconcile conflicting views on the mechanisms controlling organic carbon dynamics in soil. We discuss the divergent opinions about chemical recalcitrance, the microbial or plant origin of persistent soil organic matter, the contribution of particulate organic matter to additional organic carbon storage in soil, and the spatial and energetic inaccessibility of soil organic matter to decomposers. In the second part, we examine the advantages and limitations of big data management and modeling, which are essential tools to link the latest scientific theories with the actions taken by stakeholders. Finally, we show how the analysis and discussion of controversies can guide scientists in supporting stakeholders for the design of (i) appropriate trade-offs for biomass use in agriculture and forestry and (ii) climate-smart management practices, keeping in mind their still unresolved effects on soil carbon storage.

3.
Nat Commun ; 12(1): 810, 2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-33547289

RESUMO

The understanding of soil organic matter (SOM) dynamics has considerably advanced in recent years. It was previously assumed that most SOM consisted of recalcitrant compounds, whereas the emerging view considers SOM as a range of polymers continuously processed into smaller molecules by decomposer enzymes. Mainstreaming this new paradigm in current models is challenging because of their ill-adapted framework. We propose the C-STABILITY model to resolve this issue. Its innovative framework combines compartmental and continuous modeling approaches to accurately reproduce SOM cycling processes. C-STABILITY emphasizes the influence of substrate accessibility on SOM turnover and makes enzymatic and microbial biotransformations of substrate explicit. Theoretical simulations provide new insights on how depolymerization and decomposers ecology impact organic matter chemistry and amount during decomposition and at steady state. The flexible mathematical structure of C-STABILITY offers a promising foundation for exploring new mechanistic hypotheses and supporting the design of future experiments.


Assuntos
Celulose/metabolismo , Lignina/metabolismo , Consórcios Microbianos/fisiologia , Modelos Estatísticos , Solo/química , Açúcares/metabolismo , Biodegradação Ambiental , Biotransformação , Simulação por Computador , Lipídeos/química , Proteínas/metabolismo , Microbiologia do Solo
4.
Sci Rep ; 8(1): 10904, 2018 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-30026597

RESUMO

Southwest Siberia encompasses the forest-steppe and sub-taiga climatic zones and has historically been utilized for agriculture. Coinciding with predicted changes in climate for the region is the pressure of agricultural development; however, a characterization of the soil water and carbon dynamics is lacking. We assessed current soil water properties and soil organic carbon turnover in forests and grasslands for two sites that span the forest steppe and sub-taiga bioclimatic zones. Soil evaporation was 0.62 ± 0.17 mm d-1 (mean ± standard error) in grasslands and 0.45 ± 0.08 mm d-1 in the forests of the forest-steppe site. Evaporation at the sub-taiga site was 1.80 ± 1.70 mm d-1 in grasslands and 0.96 ± 0.05 mm d-1 in forest plots. Evaporation was significantly greater at the sub-taiga site than the forest-steppe site. The density of fine roots explained the soil water isotopic patterns between vegetation types and sites. We found soil organic matter turnover to be three times faster in the sub-taiga site than in the forest-steppe site. Our results show that while climate factors, in particular snow levels, between the two sites are drivers for water and carbon cycles, site level hydrology, soil characteristics, and vegetation directly interact to influence the water and carbon dynamics.

5.
Nature ; 559(7715): 599-602, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29995858

RESUMO

The exchange of carbon between soil organic carbon (SOC) and the atmosphere affects the climate1,2 and-because of the importance of organic matter to soil fertility-agricultural productivity3. The dynamics of topsoil carbon has been relatively well quantified4, but half of the soil carbon is located in deeper soil layers (below 30 centimetres)5-7, and many questions remain regarding the exchange of this deep carbon with the atmosphere8. This knowledge gap restricts soil carbon management policies and limits global carbon models1,9,10. Here we quantify the recent incorporation of atmosphere-derived carbon atoms into whole-soil profiles, through a meta-analysis of changes in stable carbon isotope signatures at 112 grassland, forest and cropland sites, across different climatic zones, from 1965 to 2015. We find, in agreement with previous work5,6, that soil at a depth of 30-100 centimetres beneath the surface (the subsoil) contains on average 47 per cent of the topmost metre's SOC stocks. However, we show that this subsoil accounts for just 19 per cent of the SOC that has been recently incorporated (within the past 50 years) into the topmost metre. Globally, the median depth of recent carbon incorporation into mineral soil is 10 centimetres. Variations in the relative allocation of carbon to deep soil layers are better explained by the aridity index than by mean annual temperature. Land use for crops reduces the incorporation of carbon into the soil surface layer, but not into deeper layers. Our results suggest that SOC dynamics and its responses to climatic control or land use are strongly dependent on soil depth. We propose that using multilayer soil modules in global carbon models, tested with our data, could help to improve our understanding of soil-atmosphere carbon exchange.


Assuntos
Atmosfera/química , Carbono/análise , Solo/química , Agricultura , Biomassa , Carbono/metabolismo , Isótopos de Carbono/análise , Isótopos de Carbono/metabolismo , Clima , Produtos Agrícolas/metabolismo , Conjuntos de Dados como Assunto , Florestas , Pradaria , Temperatura , Clima Tropical
6.
Rapid Commun Mass Spectrom ; 29(13): 1205-14, 2015 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-26395604

RESUMO

RATIONALE: We compared gas chromatography/isotope ratio mass spectrometry (GC/IRMS) and liquid chromatography/isotope ratio mass spectrometry (LC/IRMS) for the measurement of δ(13)C values in carbohydrates. Contrary to GC/IRMS, no derivatisation is needed for LC/IRMS analysis of carbohydrates. Hence, although LC/IRMS is expected to be more accurate and precise, no direct comparison has been reported. METHODS: GC/IRMS with the aldonitrile penta-acetate (ANPA) derivatisation method was compared with LC/IRMS without derivatisation. A large number of glucose standards and a variety of natural samples were analysed for five neutral carbohydrates at natural abundance as well as at (13)C-enriched levels. Gas chromatography/chemical ionisation mass spectrometry (GC/CIMS) was applied to check for incomplete derivatisation of the carbohydrate, which would impair the accuracy of the GC/IRMS method. RESULTS: The LC/IRMS technique provided excellent precision (±0.08‰ and ±3.1‰ at natural abundance and enrichment levels, respectively) for the glucose standards and this technique proved to be superior to GC/IRMS (±0.62‰ and ±19.8‰ at natural abundance and enrichment levels, respectively). For GC/IRMS measurements the derivatisation correction and the conversion of carbohydrates into CO2 had a considerable effect on the measured δ(13)C values. However, we did not find any significant differences in the accuracy of the two techniques over the full range of natural δ(13)C abundances and (13)C-labelled glucose. The difference in the performance of GC/IRMS and LC/IRMS diminished when the δ(13)C values were measured in natural samples, because the chromatographic performance and background correction became critical factors, particularly for LC/IRMS. The derivatisation of carbohydrates for the GC/IRMS method was complete. CONCLUSIONS: Although both LC/IRMS and GC/IRMS are reliable techniques for compound-specific stable carbon isotope analysis of carbohydrates (provided that derivatisation is complete and the calibration requirements are met), LC/IRMS is the technique of choice. The reasons for this are the improved precision, simpler sample preparation, and straightforward isotopic calibration.


Assuntos
Isótopos de Carbono/análise , Cromatografia Líquida/métodos , Cromatografia Gasosa-Espectrometria de Massas/métodos , Espectrometria de Massas/métodos , Calibragem , Carboidratos/análise , Cromatografia Líquida/normas , Festuca/química , Cromatografia Gasosa-Espectrometria de Massas/normas , Glucose/análise , Espectrometria de Massas/normas , Ulva/química , Zea mays/química
7.
Sci Total Environ ; 497-498: 345-352, 2014 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-25137382

RESUMO

The impacts of fresh organic matter (OM) incorporation in an industrial PAH-contaminated soil on its structure and contaminant concentrations (available and total) were monitored. A control soil and a soil amended with the equivalent of 10 years maize residue input were incubated in laboratory-controlled conditions over 15 months. The structure of the amended soil showed an aggregation process trend which is attributable to (i) the enhanced microbial activity resulting from fresh OM input itself and (ii) the fresh OM and its degradation products. Initially the added organic matter was evenly distributed among all granulodensimetric fractions, and then rapidly degraded in the sand fraction, while stabilizing and accumulating in the silts. PAH degradation remained slight, despite the enhanced microbial biomass activity, which was similar to kinetics of the turnover rate of OM in an uncontaminated soil. The silts stabilized the anthropogenic OM and associated PAH. The addition of fresh OM tended to contribute to this stabilization process. Thus, in a context of plant growth on this soil two opposing processes might occur: rhizodegradation of the available contaminant and enhanced stabilization of the less available fraction due to carbon input.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos/química , Poluentes do Solo/química , Solo/química , Indústrias , Modelos Químicos
8.
Tree Physiol ; 32(6): 776-98, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22700544

RESUMO

Pulse-labelling of trees with stable or radioactive carbon (C) isotopes offers the unique opportunity to trace the fate of labelled CO(2) into the tree and its release to the soil and the atmosphere. Thus, pulse-labelling enables the quantification of C partitioning in forests and the assessment of the role of partitioning in tree growth, resource acquisition and C sequestration. However, this is associated with challenges as regards the choice of a tracer, the methods of tracing labelled C in tree and soil compartments and the quantitative analysis of C dynamics. Based on data from 47 studies, the rate of transfer differs between broadleaved and coniferous species and decreases as temperature and soil water content decrease. Labelled C is rapidly transferred belowground-within a few days or less-and this transfer is slowed down by drought. Half-lives of labelled C in phloem sap (transfer pool) and in mature leaves (source organs) are short, while those of sink organs (growing tissues, seasonal storage) are longer. (13)C measurements in respiratory efflux at high temporal resolution provide the best estimate of the mean residence times of C in respiratory substrate pools, and the best basis for compartmental modelling. Seasonal C dynamics and allocation patterns indicate that sink strength variations are important drivers for C fluxes. We propose a conceptual model for temperate and boreal trees, which considers the use of recently assimilated C versus stored C. We recommend best practices for designing and analysing pulse-labelling experiments, and identify several topics which we consider of prime importance for future research on C allocation in trees: (i) whole-tree C source-sink relations, (ii) C allocation to secondary metabolism, (iii) responses to environmental change, (iv) effects of seasonality versus phenology in and across biomes, and (v) carbon-nitrogen interactions. Substantial progress is expected from emerging technologies, but the largest challenge remains to carry out in situ whole-tree labelling experiments on mature trees to improve our understanding of the environmental and physiological controls on C allocation.


Assuntos
Dióxido de Carbono/metabolismo , Árvores/metabolismo , Carbono/metabolismo , Isótopos de Carbono/metabolismo , Fotossíntese , Traçadores Radioativos
9.
Rapid Commun Mass Spectrom ; 26(11): 1363-71, 2012 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-22555930

RESUMO

RATIONALE: Nano-scale secondary ion mass spectrometry (NanoSIMS) is still hampered by a lack of appropriate calibration method for the quantification of elemental and isotopic ratios in heterogeneous materials such as soil samples. The potential of (13)C-(15)N-labeled density fractions of soil to calibrate the C/N, (13)C/(12)C and (15)N/(14)N ratios provided by NanoSIMS was evaluated. METHODS: The spatial organization of soil particles found at the macro- and micro-scales were compared. The C/N, (13)C/(12)C and (15)N/(14)N ratios measured at the macroscopic scale from different density fractions using an elemental analyzer coupled to an isotope ratio mass spectrometer (EA/IRMS) were compared with the corresponding micro-scale NanoSIMS measurements. When the macro- and micro-scales patterns were similar, macroscopic scale measurements obtained by EA/IRMS and the corresponding NanoSIMS C/N and (15)N/(14)N ratios averaged per fraction were used to obtain correction equations. The correction method using the internal calibration procedure was compared with the traditional one using a single organic standard. RESULTS: It was demonstrated that the correction method using an internal calibration procedure was applicable for NanoSIMS images acquired on more than 500 µm(2) per fraction and provided more accurate C/N and (15)N/(14)N ratios than the traditional correction method. CONCLUSIONS: As long as the NanoSIMS sampling was representative of the macroscopic properties, the correction method using an internal calibration procedure allowed better quantification of the isotope tracers and characterization of the C/N ratios. This method not only produced qualitative images, but also accurate quantitative parameters from which ecological interpretations can be derived.

10.
Environ Sci Technol ; 46(7): 3943-9, 2012 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-22360342

RESUMO

Direct observations of processes occurring at the mineral-organic interface are increasingly seen as relevant for the cycling of both natural soil organic matter and organic contaminants in soils and sediments. Advanced analytical tools with the capability to visualize and characterize organic matter at the submicrometer scale, such as Nano Secondary Ion Mass Spectrometry (NanoSIMS) and Scanning Transmission X-ray Microscopy (STXM) coupled to Near Edge X-ray Absorption Fine Structure Spectroscopy (NEXAFS), may be combined to locate and characterize mineral-associated organic matter. Taking advantage of samples collected from a decadal (15)N litter labeling experiment in a temperate forest, we demonstrate the potential of NanoSIMS to image intact soil particles and to detect spots of isotopic enrichment even at low levels of (15)N application. We show how microsites of isotopic enrichment detected by NanoSIMS can be speciated by STXM-NEXAFS performed on the same particle. Finally, by showing how (15)N enrichment at one microsite could be linked to the presence of microbial metabolites, we emphasize the potential of this combined imaging and spectroscopic approach to link microenvironment with geochemical process and/or location with ecological function.


Assuntos
Microscopia/métodos , Nanopartículas/química , Nanotecnologia/métodos , Compostos Orgânicos/química , Solo/química , Espectrometria de Massa de Íon Secundário/métodos , Alemanha , Isótopos de Nitrogênio , Compostos de Silício/química
11.
Anal Chim Acta ; 672(1-2): 15-9, 2010 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-20579483

RESUMO

The aim of this work was to develop a method for the clean-up and preconcentration of zearalenone from corn and wheat samples employing molecularly imprinted polymer (MIP) as selective sorbent for solid-phase extraction (SPE). Cereal samples were extracted with acetonitrile/water (75:25, v/v) and the extract was diluted with water and applied to an AFFINIMIP ZON MIP-SPE column. The column was then washed to eliminate the interferences and zearalenone was eluted with methanol and quantified using HPLC with fluorescence detection (lambda(exc)=275/lambda(em)=450 nm). The precision and accuracy of the method were satisfactory for both cereals at the different fortification levels tested and it gave recoveries between 82 and 87% (RSDr 2.5-6.2%, n=3) and 86 and 90% (RSDr 0.9-6.8%, n=3) for wheat and maize, respectively. MIP-SPE column capacity was determined to be not less than 6.6 microg of zearalenone and to be at least four times higher than that of immunoaffinity column (IAC). The application of AFFINIMIP ZON molecularly imprinted polymer as a selective sorbent material for detection of zearalenone fulfilled the method performance criteria required by the Commission Regulation (EC) No. 401/2006, demonstrating the suitability of the technique for the control of zearalenone in cereal samples.


Assuntos
Impressão Molecular , Polímeros/química , Extração em Fase Sólida/métodos , Triticum/química , Zea mays/química , Zearalenona/análise
12.
J Chromatogr A ; 1217(43): 6668-73, 2010 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-20488448

RESUMO

The aim of this work was to develop a method for the clean-up of a mycotoxin, i.e. Ochratoxin A (OTA), from cereal extracts employing a new molecularly imprinted polymer (MIP) as selective sorbent for solid-phase extraction (SPE) and to compare with an immunoaffinity column. A first series of experiments was carried out in pure solvents to estimate the potential of the imprinted sorbent in terms of selectivity studying the retention of OTA on the MIP and on a non-imprinted polymer using conventional crushed monolith. The selectivity of the MIP was also checked by its application to wheat extracts. Then, after this feasibility study, two different formats of MIP: crushed monolith and micro-beads were evaluated and compared. Therefore an optimization procedure was applied to the selective extraction from wheat using the MIP beads. The whole procedure was validated by applying it to wheat extract spiked by OTA at different concentration levels and then to a certified contaminated wheat sample. Recoveries close to 100% were obtained. The high selectivity brought by the MIP was compared to the selectivity by an immunoaffinity cartridge for the clean-up of the same wheat sample. The study of capacity of both showed a significant higher capacity of the MIP.


Assuntos
Análise de Alimentos/métodos , Impressão Molecular , Ocratoxinas/isolamento & purificação , Extração em Fase Sólida/métodos , Triticum/química , Adsorção , Cromatografia de Afinidade/métodos , Técnicas de Imunoadsorção , Reprodutibilidade dos Testes
13.
Rapid Commun Mass Spectrom ; 17(23): 2626-31, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-14648900

RESUMO

Carbohydrate is an important pool in the terrestrial carbon cycle. The potential offered by natural and artificial 13C-labelling techniques should therefore be applied to the investigation of the dynamics of individual sugars in soils. For this reason, we evaluated the method of 13C sugar analysis by gas chromatography/combustion/isotope-ratio mass spectrometry (GC/C/IRMS) after hydrolysis and direct trimethylsilylation. Trimethylsilylation involved the addition of several carbon atoms per sugar. These atoms have to be taken into account in the estimation of the carbon isotope ratio. The analysis of standard and natural pentoses and hexoses of known 13C enrichments revealed that the number of analysed added carbon atoms was less than expected from stoichiometry. This was attributed to incomplete derivatization and/or incomplete oxidation of methylsilyl carbon before IRMS. Using a calibration of the number of analysed added carbon atoms, the isotope excess of enriched samples could be determined with a relative error close to 5%. Concerning the determination of natural abundances by GC/C/IRMS, we could measure the delta 13C of standard C3- and C4-derived sugars with an accuracy of +/-1.5 per thousand using the previous calibration. We were able to apply this technique to plant-soil systems labelled by pulse-chase of 13CO2, revealing the nature and dynamics of sugars in the plant rhizosphere.


Assuntos
Plantas/química , Solo/análise , Compostos de Trimetilsilil/química , Algoritmos , Calibragem , Carboidratos/química , Isótopos de Carbono/análise , Radioisótopos de Carbono/análise , Cromatografia Gasosa-Espectrometria de Massas , Hidrólise , Indicadores e Reagentes , Polissacarídeos/química , Triticum/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA