Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Microsc ; 249(3): 215-35, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23323728

RESUMO

The contribution describes the implementation of a broad ion beam (BIB) polisher into a scanning electron microscope (SEM) functioning at cryogenic temperature (cryo). The whole system (BIB-cryo-SEM) provides a first generation of a novel multibeam electron microscope that combines broad ion beam with cryogenic facilities in a conventional SEM to produce large, high-quality cross-sections (up to 2 mm(2)) at cryogenic temperature to be imaged at the state-of-the-art SEM resolution. Cryogenic method allows detecting fluids in their natural environment and preserves samples against desiccation and dehydration, which may damage natural microstructures. The investigation of microstructures in the third dimension is enabled by serial cross-sectioning, providing broad ion beam tomography with slices down to 350 nm thick. The functionalities of the BIB-cryo-SEM are demonstrated by the investigation of rock salts (synthetic coarse-grained sodium chloride synthesized from halite-brine mush cold pressed at 150 MPa and 4.5 GPa, and natural rock salt mylonite from a salt glacier at Qom Kuh, central Iran). In addition, results from BIB-cryo-SEM on a gas shale and Boom Clay are also presented to show that the instrument is suitable for a large range of sedimentary rocks. For the first time, pore and grain fabrics of preserved host and reservoir rocks can be investigated at nm-scale range over a representative elementary area. In comparison with the complementary and overlapping performances of the BIB-SEM method with focused ion beam-SEM and X-ray tomography methods, the BIB cross-sectioning enables detailed insights about morphologies of pores at greater resolution than X-ray tomography and allows the production of large representative surfaces suitable for FIB-SEM investigations of a specific representative site within the BIB cross-section.

2.
Int J Cosmet Sci ; 32(6): 422-34, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20384898

RESUMO

Examination of very long hair (length > 2.4 m) using a large range of evaluation methods including physical, chemical, biochemical and microscopic techniques has enabled to attain a detailed understanding of natural ageing of human hair keratin fibres. Scrutinizing hair that has undergone little or no oxidative aggression--because of the absence of action of chemical agents such as bleaching or dyeing--from the root to the tip shows the deterioration process, which gradually takes place from the outside to the inside of the hair shaft: first, a progressive abrasion of the cuticle, whilst the cortex structure remains unaltered, is evidenced along a length of roughly 1 m onwards together with constant shine, hydrophobicity and friction characteristics. Further along the fibre, a significant damage to cuticle scales occurs, which correlates well with ceramides and 18-Methyl Eicosanoic Acid (18-MEA) decline, and progressive decrease in keratin-associated protein content. Most physical descriptors of mechanical and optical properties decay significantly. This detailed description of natural ageing of human hair fibres by a fine analysis of hair components and physical parameters in relationship with cosmetic characteristics provides a time-dependent 'damage scale' of human hair, which may help in designing new targeted hair care formulations.


Assuntos
Ceramidas/análise , Ácidos Eicosanoicos/análise , Cabelo/química , Queratinas Específicas do Cabelo/química , Adulto , Povo Asiático , Eletroforese em Gel Bidimensional , Feminino , Cabelo/ultraestrutura , Humanos , Microscopia de Força Atômica , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Espectrometria de Massas por Ionização por Electrospray , Tensão Superficial
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA