Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 12794, 2023 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-37550331

RESUMO

The role of iron in the two major sites of adaptive thermogenesis, namely the beige inguinal (iWAT) and brown adipose tissues (BAT) has not been fully understood yet. Body iron levels and distribution is controlled by the iron regulatory peptide hepcidin. Here, we explored iron homeostasis and thermogenic activity in brown and beige fat in wild-type and iron loaded Hepcidin KO mice. Hepcidin-deficient mice displayed iron overload in both iWAT and BAT, and preferential accumulation of ferritin in stromal cells compared to mature adipocytes. In contrast to BAT, the iWAT of Hepcidin KO animals featured with defective thermogenesis evidenced by an altered beige signature, including reduced UCP1 levels and decreased mitochondrial respiration. This thermogenic modification appeared cell autonomous and persisted after a 48 h-cold challenge, a potent trigger of thermogenesis, suggesting compromised de novo adipogenesis. Given that WAT browning occurs in both mice and humans, our results provide physiological results to interrogate the thermogenic capacity of patients with iron overload disorders.


Assuntos
Adipogenia , Hepcidinas , Animais , Camundongos , Tecido Adiposo Marrom , Tecido Adiposo Branco , Hepcidinas/genética , Ferro , Camundongos Endogâmicos C57BL , Termogênese , Proteína Desacopladora 1/genética
2.
J Nutr Biochem ; 111: 109175, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36223834

RESUMO

Increased body iron stores and inflammation in adipose tissue have been implicated in the pathogenesis of insulin resistance (IR) and type 2 diabetes mellitus. However, the underlying basis of these associations is unclear. To attempt to investigate this, we studied the development of IR and associated inflammation in adipose tissue in the presence of increased body iron stores. Male hepcidin knock-out (Hamp1-/-) mice, which have increased body iron stores, and wild-type (WT) mice were fed a high-fat diet (HFD) for 12 and 24 weeks. Development of IR and metabolic parameters linked to this, insulin signaling in various tissues, and inflammation and iron-related parameters in visceral adipose tissue were studied in these animals. HFD-feeding resulted in impaired glucose tolerance in both genotypes of mice. In response to the HFD for 24 weeks, Hamp1-/- mice gained less body weight and developed less systemic IR than corresponding WT mice. This was associated with less lipid accumulation in the liver and decreased inflammation and lipolysis in the adipose tissue in the knock-out mice, than in the WT animals. Fewer macrophages infiltrated the adipose tissue in the knockout mice than in wild-type mice, with these macrophages exhibiting a predominantly anti-inflammatory (M2-like) phenotype and indirect evidence of a possible lowered intracellular iron content. The absence of hepcidin was thus associated with attenuated inflammation in the adipose tissue and increased whole-body insulin sensitivity, suggesting a role for it in these processes.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Masculino , Camundongos , Animais , Resistência à Insulina/fisiologia , Dieta Hiperlipídica/efeitos adversos , Hepcidinas/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Camundongos Endogâmicos C57BL , Tecido Adiposo/metabolismo , Inflamação/metabolismo , Insulina/metabolismo , Camundongos Knockout , Ferro/metabolismo
3.
J Neurochem ; 164(6): 847-857, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36562685

RESUMO

Astrocytes are thought to play a crucial role in brain iron homeostasis. How they accomplish this regulation in vivo is unclear. In a recent transcriptomic analysis, we showed that polysomal Ftl1 and Fth1 mRNAs, encoding the ferritin light (Ftl) and heavy (Fth) chains that assemble into ferritin, a critical complex for iron storage and reduction, are enriched in perisynaptic astrocytic processes as compared to astrocytic soma. These data suggested that ferritin translation plays a specific role at the perisynaptic astrocytic interface and is tighly regulated by local translation. Here, we used our recently described AstroDot 3D in situ methodology to study the density and localization of ferritin mRNAs in astrocytes in the hippocampus in three different contexts in which local or systemic iron overload has been documented: aging, the hepcidin knock-out mouse model of hemochromatosis and the APP/PS1dE9 mouse model of Alzheimer's disease (AD). Our results showed that in wild type mice, Fth1 mRNA density was higher than Ftl1 and that both mRNAs were mostly distributed in astrocyte fine processes. Aging and absence of hepcidin caused an increased Fth1/Ftl1 ratio in astrocytes and in the case of aging, led to a redistribution of Fth1 mRNAs in astrocytic fine processes. In contrast, in AD mice, we observed a lower Fth1/Ftl1 ratio. Fth1 mRNAs became more somatic and Ftl1 mRNAs redistributed in large processes of astrocytes proximal to Amyloid beta (Aß) deposits. Hence, we propose that regulation of ferritin mRNA density and distribution in astrocytes contribute to iron homeostasis in physiology and pathophysiology.


Assuntos
Doença de Alzheimer , Ferritinas , Camundongos , Animais , Ferritinas/genética , Ferritinas/metabolismo , Hepcidinas , Astrócitos/metabolismo , Peptídeos beta-Amiloides , RNA Mensageiro , Ferro/metabolismo , Doença de Alzheimer/patologia , Camundongos Knockout , Hipocampo/metabolismo
4.
Proc Natl Acad Sci U S A ; 118(40)2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34593646

RESUMO

Iron is an essential biometal, but is toxic if it exists in excess. Therefore, iron content is tightly regulated at cellular and systemic levels to meet metabolic demands but to avoid toxicity. We have recently reported that adaptive thermogenesis, a critical metabolic pathway to maintain whole-body energy homeostasis, is an iron-demanding process for rapid biogenesis of mitochondria. However, little information is available on iron mobilization from storage sites to thermogenic fat. This study aimed to determine the iron-regulatory network that underlies beige adipogenesis. We hypothesized that thermogenic stimulus initiates the signaling interplay between adipocyte iron demands and systemic iron liberation, resulting in iron redistribution into beige fat. To test this hypothesis, we induced reversible activation of beige adipogenesis in C57BL/6 mice by administering a ß3-adrenoreceptor agonist CL 316,243 (CL). Our results revealed that CL stimulation induced the iron-regulatory protein-mediated iron import into adipocytes, suppressed hepcidin transcription, and mobilized iron from the spleen. Mechanistically, CL stimulation induced an acute activation of hypoxia-inducible factor 2-α (HIF2-α), erythropoietin production, and splenic erythroid maturation, leading to hepcidin suppression. Disruption of systemic iron homeostasis by pharmacological HIF2-α inhibitor PT2385 or exogenous administration of hepcidin-25 significantly impaired beige fat development. Our findings suggest that securing iron availability via coordinated interplay between renal hypoxia and hepcidin down-regulation is a fundamental mechanism to activate adaptive thermogenesis. It also provides an insight into the effects of adaptive thermogenesis on systemic iron mobilization and redistribution.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Hepcidinas/metabolismo , Ferro/metabolismo , Termogênese/fisiologia , Adipócitos/metabolismo , Adipócitos Bege/metabolismo , Adipogenia/fisiologia , Tecido Adiposo Bege/metabolismo , Animais , Regulação para Baixo/fisiologia , Eritropoetina/metabolismo , Homeostase/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Transdução de Sinais/fisiologia
5.
Blood Adv ; 4(16): 3853-3863, 2020 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-32810223

RESUMO

Iron is required for the oxidative response of neutrophils to allow the production of reactive oxygen species (ROS). However, neutrophil function may be severely altered in conditions of iron overload, as observed in chronically transfused patients. Therefore, a tight regulation of neutrophil iron homeostasis seems to be critical for avoiding iron toxicity. Hepcidin is the key iron regulator in organisms; however, no studies have investigated its role in maintaining neutrophil iron homeostasis or characterized neutrophil function in patients with hereditary hemochromatosis (HH), a common iron overload genetic disorder that results from a defect in hepcidin production. To explore these issues, we studied 2 mouse models of iron overload: an experimentally induced iron overload model (EIO), in which hepcidin is increased, and a genetic HH model of iron overload with a deletion of hepatic hepcidin. We found that iron-dependent increase of hepatic hepcidin results in neutrophil intracellular iron trapping and consecutive defects in oxidative burst activity. In contrast, in both HH mouse models and HH patients, the lack of hepcidin expression protects neutrophils from toxic iron accumulation. Moreover, systemic iron overload correlated with a surprising neutrophil priming and resulted in a more powerful oxidative burst. Indeed, important factors in neutrophil priming and activation, such as tumor necrosis factor α (TNF-α), VCAM-1, and ICAM-1 are increased in the plasma of HH patients and are associated with an increase in HH neutrophil phagocytosis capacity and a decrease in L-selectin surface expression. This is the first study to characterize neutrophil iron homeostasis and associated functions in patients with HH.


Assuntos
Hemocromatose , Sobrecarga de Ferro , Animais , Hemocromatose/genética , Hepcidinas/genética , Humanos , Ferro , Camundongos , Neutrófilos
6.
Front Physiol ; 8: 804, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29089902

RESUMO

Pulmonary iron excess is deleterious and contributes to a range of chronic and acute inflammatory diseases. Optimal lung iron concentration is maintained through dynamic regulation of iron transport and storage proteins. The iron-regulatory hormone hepcidin is also expressed in the lung. In order to better understand the interactions between iron-associated molecules and the hepcidin-ferroportin axis in lung iron balance, we examined lung physiology and inflammatory responses in two murine models of systemic iron-loading, either hepcidin knock-out (Hepc KO) or liver-specific hepcidin KO mice (Hepc KOliv), which do (Hepc KOliv) or do not (Hepc KO) express lung hepcidin. We have found that increased plasma iron in Hepc KO mice is associated with increased pulmonary iron levels, consistent with increased cellular iron uptake by pulmonary epithelial cells, together with an increase at the apical membrane of the cells of the iron exporter ferroportin, consistent with increased iron export in the alveoli. Subsequently, alveolar macrophages (AM) accumulate iron in a non-toxic form and this is associated with elevated production of ferritin. The accumulation of iron in the lung macrophages of hepcidin KO mice contrasts with splenic and hepatic macrophages which contain low iron levels as we have previously reported. Hepc KOliv mice with liver-specific hepcidin deficiency demonstrated same pulmonary iron overload profile as the Hepc KO mice, suggesting that pulmonary hepcidin is not critical in maintaining local iron homeostasis. In addition, the high iron load in the lung of Hepc KO mice does not appear to enhance acute lung inflammation or injury. Lastly, we have shown that intraperitoneal LPS injection is not associated with pulmonary hepcidin induction, despite high levels of inflammatory cytokines. However, intranasal LPS injection stimulates a hepcidin response, likely derived from AM, and alters pulmonary iron content in Hepc KO mice.

7.
Sci Rep ; 7(1): 12679, 2017 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-28978947

RESUMO

The biguanide metformin is used for its antidiabetic effect for many years but how metformin acts remains poorly understood and controversial. AMP-activated protein kinase (AMPK), a protein kinase that plays a key role in maintaining energy homeostasis, is assumed to be one of the prime targets of metformin. However, since our demonstration that AMPK is not required for the beneficial effects of metformin on the control of glycemia, the list of AMPK-independent actions of metformin is rapidly increasing. Given the conflicting results on the effects of metformin we sought, using our genetic mouse models deficient in the catalytic subunits of AMPK, to determine whether this kinase is involved in the effects of metformin on the expression of the iron-regulatory hormone hepcidin, as recently proposed. Here we demonstrate, using different approaches, either isolated hepatocytes that lack AMPK, or direct AMPK activators, that, AMPK activation is not necessary for metformin to inhibit BMP6-induced hepcidin gene expression. These results may shed new lights on the increasingly recognized AMPK-independent metformin's molecular action, an important area of current research.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Proteína Morfogenética Óssea 6/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Hepatócitos/metabolismo , Hepcidinas/genética , Metformina/farmacologia , Animais , Células Cultivadas , Hepatócitos/efeitos dos fármacos , Hepcidinas/metabolismo , Camundongos Knockout , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo
8.
J Pathol ; 241(1): 104-114, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27741349

RESUMO

Iron is both an essential and a potentially toxic element, and its systemic homeostasis is controlled by the iron hormone hepcidin. Hepcidin binds to the cellular iron exporter ferroportin, causes its degradation, and thereby diminishes iron uptake from the intestine and the release of iron from macrophages. Given that hepcidin-resistant ferroportin mutant mice show exocrine pancreas dysfunction, we analysed pancreata of aging hepcidin knockout (KO) mice. Hepcidin and Hfe KO mice were compared with wild-type (WT) mice kept on standard or iron-rich diets. Twelve-month-old hepcidin KO mice were subjected to daily minihepcidin PR73 treatment for 1 week. Six-month-old hepcidin KO mice showed cytoplasmic acinar iron overload and mild pancreatitis, together with elevated expression of the iron uptake mediators DMT1 and Zip14. Acinar atrophy, massive macrophage infiltration, fatty changes and pancreas fibrosis were noted in 1-year-old hepcidin KO mice. As an underlying mechanism, 6-month-old hepcidin KO mice showed increased pancreatic oxidative stress, with elevated DNA damage, apoptosis and activated nuclear factor-κB (NF-κB) signalling. Neither iron overload nor pancreatic damage was observed in WT mice fed iron-rich diet or in Hfe KO mice. Minihepcidin application to hepcidin KO mice led to an improvement in general health status and to iron redistribution from acinar cells to macrophages. It also resulted in decreased NF-κB activation and reduced DNA damage. In conclusion, loss of hepcidin signalling in mice leads to iron overload-induced chronic pancreatitis that is not seen in situations with less severe iron accumulation. The observed tissue injury can be reversed by hepcidin supplementation. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Assuntos
Células Acinares/metabolismo , Hepcidinas/deficiência , Sobrecarga de Ferro/complicações , Pancreatite Crônica/etiologia , Animais , Apoptose/fisiologia , Citoplasma/metabolismo , Modelos Animais de Doenças , Hepcidinas/genética , Hepcidinas/fisiologia , Sobrecarga de Ferro/metabolismo , Sobrecarga de Ferro/patologia , Macrófagos/patologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Eletrônica de Transmissão , Estresse Oxidativo/fisiologia , Pâncreas/ultraestrutura , Pancreatite Crônica/metabolismo , Pancreatite Crônica/patologia
9.
FASEB J ; 30(1): 252-61, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26370847

RESUMO

The amount of iron in the diet directly influences the composition of the microbiota. Inversely, the effects of the microbiota on iron homeostasis have been little studied. So, we investigate whether the microbiota itself may alter host iron sensing. Duodenal cytochrome b and divalent metal transporter 1, involved in apical iron uptake, are 8- and 10-fold, respectively, more abundant in the duodenum of germ-free (GF) mice than in mice colonized with a microbiota. In contrast, the luminal exporter ferroportin is 2-fold less abundant in GF. The overall signature of microbiota on iron-related proteins is similar in the colon. The colonization does not modify systemic parameters as plasma transferrin saturation (20%), plasma ferritin (150 ng/L), and liver (85 µg/g) iron load. Commensal organisms (Bacteroides thetaiotaomicron VPI-5482 and Faecalibacterium prausnitzii A2-165) and a probiotic strain (Streptococcus thermophilus LMD-9) led to up to 12-fold induction of ferritin in colon. Our data suggest that the intestinal cells of GF mice are depleted of iron and that following colonization, the epithelial cells favor iron storage. This study is the first to demonstrate that gut microbes induce a specific iron-related protein signature, highlighting new aspects of the crosstalk between the microbiota and the intestinal epithelium.


Assuntos
Proteínas de Transporte de Cátions/metabolismo , Mucosa Intestinal/metabolismo , Ferro/metabolismo , Microbiota , Animais , Proteínas de Transporte de Cátions/genética , Colo/metabolismo , Colo/microbiologia , Citocromos b/genética , Citocromos b/metabolismo , Duodeno/metabolismo , Duodeno/microbiologia , Ferritinas/sangue , Mucosa Intestinal/microbiologia , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL
10.
PLoS One ; 10(12): e0145685, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26709821

RESUMO

BACKGROUND: Cystic Fibrosis (CF) is a frequent and lethal autosomal recessive disease caused by mutations in the gene encoding the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR). Patients with CF suffer from chronic infections and severe inflammation, which lead to progressive pulmonary and gut diseases. Recently, an expanding body of evidence has suggested that iron homeostasis was abnormal in CF with, in particular, systemic iron deficiency and iron sequestration in the epithelium airway. The molecular mechanisms responsible for iron dysregulation and the relationship with inflammation in CF are unknown. METHODS AND RESULTS: We assessed the impact of CFTR deficiency on systemic and tissue iron homeostasis as well as inflammation in wildtype and CFTR knockout (KO) mice. First, in contrast to the systemic and intestinal inflammation we observed in the CFTR KO mice, we reported the absence of lung phenotype with regards to both inflammation and iron status. Second, we showed a significant decrease of plasma ferritin levels in the KO mice, as in CF patients, likely caused by a decrease in spleen ferritin levels. However, we measured unchanged plasma iron levels in the KO mice that may be explained by increased intestinal iron absorption. CONCLUSION: These results indicate that in CF, the lung do not predominantly contributes to the systemic ferritin deficiency and we propose the spleen as the major organ responsible for hypoferritinemia in the KO mouse. These results should provide a better understanding of iron dysregulation in CF patients where treating or not iron deficiency remains a challenging question.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/deficiência , Fibrose Cística/metabolismo , Ferro/metabolismo , Animais , Fibrose Cística/genética , Fibrose Cística/patologia , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Modelos Animais de Doenças , Duodeno/metabolismo , Feminino , Expressão Gênica , Homeostase , Humanos , Mediadores da Inflamação/metabolismo , Ferro/sangue , Fígado/metabolismo , Pulmão/metabolismo , Pulmão/patologia , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CFTR , Camundongos Knockout , Mucosa Respiratória/metabolismo , Baço/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA