Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 18(11): e0290390, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37967118

RESUMO

Since 2016, the invasive insect Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae) from the Americas has made maize production unattainable without pesticides in parts of Sub-Saharan Africa and Asia. To counteract this pest, farmers often resort to the use hazardous pesticides. This study aimed to investigate botanicals, microbials, and semi-synthetic insecticides in Ghana for pest control without harming local ecosystems. Under laboratory and on-station conditions, the present study evaluated the acute and sublethal responses of S. frugiperda to: (i) Pieris rapae Granulovirus (PrGV) + Bacillus thuringiensis sub sp. kurstaki (Btk) 5 WP, (ii) Btk + monosultap 55 WP, (iii) ethyl palmitate 5 SC, (iv) azadirachtin 0.3 SC, (v) acetamiprid (20 g/l) + λ-cyhalothrin (15 g/l) 35 EC, (vi) acetamiprid (30 g/l) + indoxacarb (16 g/l) 46 EC, and (vii) emamectin benzoate 1.9 EC. The results showed that at 96 hours post-exposure emamectin benzoate-based formulation has the highest acute larvicidal effect with lower LC50 values of 0.019 mL/L. However, the results suggested strong sublethal effects of PrGV + Btk, azadirachtin, and ethyl palmitate on the bionomics of S. frugiperda. Two seasons on-station experiments, showed that the semi-synthetic emamectin benzoate and the bioinsecticide PrGV + Btk are good candidates for managing S. frugiperda. The promising efficacy of emamectin benzoate and PrGV + Btk on the bionomics of S. frugiperda in the laboratory and on-station demonstrated that they are viable options for managing this pest.


Assuntos
Bacillus , Inseticidas , Animais , Inseticidas/toxicidade , Spodoptera/fisiologia , Ecossistema , Ecologia , Zea mays , Larva , Resistência a Inseticidas
2.
Sci Rep ; 12(1): 21063, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36473923

RESUMO

The fall armyworm (FAW; Spodoptera frugiperda) is one of the major agricultural pest insects. FAW is native to the Americas, and its invasion was first reported in West Africa in 2016. Then it quickly spread through Africa, Asia, and Oceania, becoming one of the main threats to corn production. We analyzed whole genome sequences of 177 FAW individuals from 12 locations on four continents to infer evolutionary processes of invasion. Principal component analysis from the TPI gene and whole genome sequences shows that invasive FAW populations originated from the corn strain. Ancestry coefficient and phylogenetic analyses from the nuclear genome indicate that invasive populations are derived from a single ancestry, distinct from native populations, while the mitochondrial phylogenetic tree supports the hypothesis of multiple introductions. Adaptive evolution specific to invasive populations was observed in detoxification, chemosensory, and digestion genes. We concluded that extant invasive FAW populations originated from the corn strain with potential contributions of adaptive evolution.


Assuntos
Spodoptera , Humanos , Animais , Spodoptera/genética , Filogenia , Ásia , África , África Ocidental
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA