Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mol Cell ; 82(20): 3781-3793.e7, 2022 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-36099913

RESUMO

Germline mutations in the BRCA genes are associated with a higher risk of carcinogenesis, which is linked to an increased mutation rate and loss of the second unaffected BRCA allele (loss of heterozygosity, LOH). However, the mechanisms triggering mutagenesis are not clearly understood. The BRCA genes contain high numbers of repetitive DNA sequences. We detected replication forks stalling, DNA breaks, and deletions at these sites in haploinsufficient BRCA cells, thus identifying the BRCA genes as fragile sites. Next, we found that stalled forks are repaired by error-prone pathways, such as microhomology-mediated break-induced replication (MMBIR) in haploinsufficient BRCA1 breast epithelial cells. We detected MMBIR mutations in BRCA1 tumor cells and noticed deletions-insertions (>50 bp) at the BRCA1 genes in BRCA1 patients. Altogether, these results suggest that under stress, error-prone repair of stalled forks is upregulated and induces mutations, including complex genomic rearrangements at the BRCA genes (LOH), in haploinsufficient BRCA1 cells.


Assuntos
Proteína BRCA1 , Replicação do DNA , Humanos , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Reparo do DNA , Mutagênese , Genes BRCA1 , Perda de Heterozigosidade , Proteína BRCA2/genética , Proteína BRCA2/metabolismo
2.
J Cell Biol ; 220(8)2021 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-34037657

RESUMO

After two converging DNA replication forks meet, active replisomes are disassembled and unloaded from chromatin. A key process in replisome disassembly is the unloading of CMG helicases (CDC45-MCM-GINS), which is initiated in Caenorhabditis elegans and Xenopus laevis by the E3 ubiquitin ligase CRL2LRR1. Here, we show that human cells lacking LRR1 fail to unload CMG helicases and accumulate increasing amounts of chromatin-bound replisome components as cells progress through S phase. Markedly, we demonstrate that the failure to disassemble replisomes reduces the rate of DNA replication increasingly throughout S phase by sequestering rate-limiting replisome components on chromatin and blocking their recycling. Continued binding of CMG helicases to chromatin during G2 phase blocks mitosis by activating an ATR-mediated G2/M checkpoint. Finally, we provide evidence that LRR1 is an essential gene for human cell division, suggesting that CRL2LRR1 enzyme activity is required for the proliferation of cancer cells and is thus a potential target for cancer therapy.


Assuntos
Proliferação de Células , Montagem e Desmontagem da Cromatina , DNA/biossíntese , Proteínas Repressoras/metabolismo , Fase S , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Quinase 1 do Ponto de Checagem/genética , Quinase 1 do Ponto de Checagem/metabolismo , DNA/genética , DNA Helicases/genética , DNA Helicases/metabolismo , Humanos , Microscopia de Fluorescência , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Ligação Proteica , Proteínas Tirosina Quinases/genética , Proteínas Tirosina Quinases/metabolismo , Proteínas Repressoras/genética , Fatores de Tempo
3.
Bioanalysis ; 13(11): 931-954, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33998268

RESUMO

Ligand-binding assay (LBA) and LC-MS have been the preferred bioanalytical techniques for the quantitation and biotransformation assessment of various therapeutic modalities. This review provides an overview of the applications of LBA, LC-MS/MS and LC-HRMS for the bioanalysis of complex protein therapeutics including antibody-drug conjugates, fusion proteins and PEGylated proteins as well as oligonucleotide therapeutics. The strengths and limitations of LBA and LC-MS, along with some guidelines on the choice of appropriate bioanalytical technique(s) for the bioanalysis of these therapeutic modalities are presented. With the discovery of novel and more complex therapeutic modalities, there is an increased need for the biopharmaceutical industry to develop a comprehensive bioanalytical strategy integrating both LBA and LC-MS.


Assuntos
Bioensaio , Oligonucleotídeos/química , Proteínas/química , Sítios de Ligação , Cromatografia Líquida , Humanos , Ligantes , Espectrometria de Massas , Oligonucleotídeos/uso terapêutico
4.
Anal Chem ; 93(13): 5371-5376, 2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33750099

RESUMO

Traditionally the biotransformation of antibody drug conjugates (ADCs) has been evaluated by affinity capture on streptavidin magnetic beads coated with a biotinylated capture reagent. To reduce the complexity of the analyte, the affinity captured ADCs are digested with enzymes ("on-bead" or after elution), and/or interchain disulfides are reduced to generate LC and HC fragments prior to mass spectrometry analysis. The "on-bead" enzymatic digestion with IdeS and PNGase F is not efficient and requires longer incubation times to achieve complete Fc and N-glycan removal. This results in a prolonged sample preparation time (7-18 h) and is not suitable for labile ADCs due to the possibility of assay-induced artifacts. To address these challenges, we developed an affinity capture method, where the ADCs are first captured onto streptavidin cartridges coated with a biotinylated generic capture reagent, followed by a 15 min "on-cartridge" digestion with IdeS or PNGase F. The ADCs are then eluted and directly analyzed by LC-HRMS. This method was successfully applied for the biotransformation assessment of site-specific ADCs with payload conjugated on the Fab or Fc. The reduced complexity of the analyte (Fc and N-glycan removal) combined with HRMS enabled sensitive and accurate identification of minor mass change catabolites and changes in the DAR distribution. This automated cartridge-based affinity capture method is fast with a total sample preparation time of less than 4 h (hands-on time of less than 1 h) and can be utilized for any human mAb/ADC independent of isotype (IgG1, IgG2, and IgG4).


Assuntos
Imunoconjugados , Biotransformação , Dissulfetos , Humanos , Imunoglobulina G , Espectrometria de Massas
5.
ACS Med Chem Lett ; 12(3): 404-412, 2021 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-33738068

RESUMO

A new series with the tetrahydroisoquinoline-fused benzodiazepine (TBD) ring system combined with the surrogates of (1-methyl-1H-pyrrol-3-yl)benzene ("MPB") payloads were designed and executed for conjugation with a monoclonal antibody for anticancer therapeutics. DNA models helped in rationally identifying modifications of the "MPB" binding component and guided structure-activity relationship generation. This hybrid series of payloads exhibited excellent in vitro activity when tested against a panel of various cancer cell lines. One of the payloads was appended with a lysosome-cleavable peptide linker and conjugated with an anti-mesothelin antibody via a site-specific conjugation method mediated by the enzyme bacterial transglutaminase (BTGase). Antibody-drug conjugate (ADC) 50 demonstrated good plasma stability and lysosomal cleavage. A single intravenous dose of ADC 50 (5 or 10 nmol/kg) showed robust efficacy in an N87 gastric cancer xenograft model.

6.
Cancers (Basel) ; 12(11)2020 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-33182707

RESUMO

Mutations in mismatch repair genes leading to mismatch repair (MMR) deficiency (dMMR) and microsatellite instability (MSI) have been implicated in multiple types of gynecologic malignancies. Endometrial carcinoma represents the largest group, with approximately 30% of these cancers caused by dMMR/MSI. Thus, testing for dMMR is now routine for endometrial cancer. Somatic mutations leading to dMMR account for approximately 90% of these cancers. However, in 5-10% of cases, MMR protein deficiency is due to a germline mutation in the mismatch repair genes MLH1, MSH2, MSH6, PMS2, or EPCAM. These germline mutations, known as Lynch syndrome, are associated with an increased risk of both endometrial and ovarian cancer, in addition to colorectal, gastric, urinary tract, and brain malignancies. So far, gynecological cancers with dMMR/MSI are not well characterized and markers for detection of MSI in gynecological cancers are not well defined. In addition, currently advanced endometrial cancers have a poor prognosis and are treated without regard to MSI status. Elucidation of the mechanism causing dMMR/MSI gynecological cancers would aid in diagnosis and therapeutic intervention. Recently, a new immunotherapy was approved for the treatment of solid tumors with MSI that have recurred or progressed after failing traditional treatment strategies. In this review, we summarize the MMR defects and MSI observed in gynecological cancers, their prognostic value, and advances in therapeutic strategies to treat these cancers.

7.
J Med Chem ; 63(22): 13913-13950, 2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-33155811

RESUMO

A series of tetrahydroisoquinoline-based benzodiazepine dimers were synthesized and tested for in vitro cytotoxicity against a panel of cancer cell lines. Structure-activity relationship investigation of various spacers guided by molecular modeling studies helped to identify compounds with picomolar activity. Payload 17 was conjugated to anti-mesothelin and anti-fucosylated monosialotetrahexosylganglioside (FucGM1) antibodies using lysosome-cleavable valine-citrulline dipeptide linkers via heterogeneous lysine conjugation and bacterial transglutaminase-mediated site-specific conjugation. In vitro, these antibody drug conjugates (ADCs) exhibited significant cytotoxic and target-mediated selectivity on human cancer cell lines. The pharmacokinetics and efficacy of these ADCs were further evaluated in gastric and lung cancer xenograft models in mice. Consistent pharmacokinetic profiles, high target specificity, and robust antitumor activity were observed in these models after a single dose of the ADC-46 (0.02 µmol/kg).


Assuntos
Anticorpos Monoclonais/química , Antineoplásicos/farmacologia , Benzodiazepinas/química , Desenho de Fármacos , Imunoconjugados/farmacologia , Carcinoma de Pequenas Células do Pulmão/tratamento farmacológico , Neoplasias Gástricas/tratamento farmacológico , Tetra-Hidroisoquinolinas/química , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/metabolismo , Antineoplásicos/química , Apoptose , Benzodiazepinas/metabolismo , Proliferação de Células , Feminino , Gangliosídeo G(M1)/análogos & derivados , Gangliosídeo G(M1)/imunologia , Proteínas Ligadas por GPI/imunologia , Humanos , Imunoconjugados/química , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Mesotelina , Camundongos , Camundongos SCID , Carcinoma de Pequenas Células do Pulmão/patologia , Neoplasias Gástricas/patologia , Relação Estrutura-Atividade , Tetra-Hidroisoquinolinas/metabolismo , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
8.
J Cell Biol ; 219(9)2020 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-32673399

RESUMO

Reprogrammed pluripotent stem cells (PSCs) are valuable for research and potentially for cell replacement therapy. However, only a fraction of reprogrammed PSCs are developmentally competent. Genomic stability and accurate DNA synthesis are fundamental for cell development and critical for safety. We analyzed whether defects in DNA replication contribute to genomic instability and the diverse differentiation potentials of reprogrammed PSCs. Using a unique single-molecule approach, we visualized DNA replication in isogenic PSCs generated by different reprogramming approaches, either somatic cell nuclear transfer (NT-hESCs) or with defined factors (iPSCs). In PSCs with lower differentiation potential, DNA replication was incompletely reprogrammed, and genomic instability increased during replicative stress. Reprogramming of DNA replication did not correlate with DNA methylation. Instead, fewer replication origins and a higher frequency of DNA breaks in PSCs with incompletely reprogrammed DNA replication were found. Given the impact of error-free DNA synthesis on the genomic integrity and differentiation proficiency of PSCs, analyzing DNA replication may be a useful quality control tool.


Assuntos
Diferenciação Celular/genética , Reprogramação Celular/genética , Replicação do DNA/genética , Células-Tronco Pluripotentes Induzidas/fisiologia , Animais , Células Cultivadas , DNA/genética , Metilação de DNA/genética , Instabilidade Genômica/genética , Células-Tronco Embrionárias Humanas/fisiologia , Humanos
9.
Sci Rep ; 10(1): 8259, 2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32427877

RESUMO

Psoriasis (PS) is a chronic skin inflammation. Up to 30% of the patients with PS develop psoriatic arthritis (PsA), a condition characterized by inflammatory arthritis that affects joints or entheses. Although there is mounting evidence for a critical role of interleukin-23 (IL-23) signaling in the pathogenesis of both PS and PsA, it remains unclear whether IL-23-induced skin inflammation drives joint disease. Here, we show that mice expressing increased levels of IL-23 in the skin (K23 mice) develop a PS-like disease that is characterized by acanthosis, parakeratosis, hyperkeratosis, and inflammatory infiltrates in the dermis. Skin disease preceded development of PsA, including enthesitis, dactylitis, and bone destruction. The development of enthesitis and dactylitis was not due to high circulating levels of IL-23, as transgenic animals and controls had similar levels of this cytokine in circulation. IL-22, a downstream cytokine of IL-23, was highly increased in the serum of K23 mice. Although IL-22 deficiency did not affect skin disease development, IL-22 deficiency aggravated the PsA-like disease in K23 mice. Our results demonstrate a central role for skin expressed IL-23 in the initiation of PS and on pathogenic processes leading to PsA.


Assuntos
Artrite Psoriásica/genética , Interleucina-23/genética , Psoríase/genética , Pele/imunologia , Animais , Artrite Psoriásica/imunologia , Feminino , Humanos , Interleucina-23/imunologia , Interleucinas/genética , Interleucinas/imunologia , Masculino , Camundongos , Psoríase/imunologia , Interleucina 22
10.
Bioorg Med Chem Lett ; 30(1): 126782, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31767265

RESUMO

Uncialamycin is one of the structurally simpler and newer members of enediyne family of natural products. It exhibits highly potent activity against several types of bacteria and cancer cells. Described herein is a strategy for the targeted delivery of this cytotoxic agent to tumors using an antibody-drug conjugate (ADC) approach. Central to the design of ADC were the generation of potent and chemically stable uncialamycin analogues and attachment of protease cleavable linkers to newly realized phenolic handles to prepare linker-payloads. Conjugation of the linker-payloads to tumor targeting antibody, in vitro activity and in vivo evaluation are presented.


Assuntos
Antraquinonas/química , Antraquinonas/síntese química , Antineoplásicos/uso terapêutico , Imunoconjugados/química , Antraquinonas/uso terapêutico , Antineoplásicos/farmacologia , Humanos , Relação Estrutura-Atividade
11.
Nat Commun ; 10(1): 4517, 2019 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-31586069

RESUMO

Neonatal inflammatory diseases are associated with severe morbidity, but the inflammatory factors underlying them and their potential effector mechanisms are poorly defined. Here we show that necrotizing enterocolitis in neonate mice is accompanied by elevation of IL-23 and IL-22 and decreased production of pancreatic enzymes. These phenotypes are mirrored in neonate mice overexpressing IL-23 in CX3CR1+ myeloid cells or in keratinocytes. The mice fail to grow and die prematurely, displaying systemic inflammation, nutrient malabsorption and decreased expression of intestinal and pancreatic genes mediating digestion and absorption of carbohydrates, proteins, and lipids. Germ-free environment improves, and genetic ablation of IL-22 restores normal growth in mice overexpressing IL-23. Mechanistically, IL-22 acts directly at the level of pancreatic acinar cells to decrease expression of the pancreas associated transcription factor 1a (PTF1a). These results show that augmented production of IL-23 and IL-22 in early life has a negative impact on pancreatic enzyme secretion and food absorption.


Assuntos
Enterocolite Necrosante/imunologia , Interleucina-23/metabolismo , Interleucinas/metabolismo , Pâncreas/enzimologia , Fatores de Transcrição/metabolismo , Células Acinares/enzimologia , Animais , Animais Recém-Nascidos , Células Cultivadas , Modelos Animais de Doenças , Enterocolite Necrosante/patologia , Humanos , Interleucina-23/genética , Interleucina-23/imunologia , Interleucinas/genética , Interleucinas/imunologia , Absorção Intestinal/imunologia , Mucosa Intestinal/imunologia , Mucosa Intestinal/patologia , Queratinócitos , Camundongos , Camundongos Knockout , Células Mieloides , Pâncreas/citologia , Cultura Primária de Células , Interleucina 22
13.
Gastroenterology ; 155(4): 1177-1191.e16, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29909020

RESUMO

BACKGROUND & AIMS: Several studies have shown that signaling via the interleukin 23 (IL23) receptor is required for development of colitis. We studied the roles of IL23, dietary factors, alterations to the microbiota, and T cells in the development and progression of colitis in mice. METHODS: All mice were maintained on laboratory diet 5053, unless otherwise noted. We generated mice that express IL23 in CX3CR1-positive myeloid cells (R23FR mice) upon cyclic administration of tamoxifen dissolved in diet 2019. Diets 2019 and 5053 have minor differences in the overall composition of protein, fat, fiber, minerals, and vitamins. CX3CR1CreER mice (FR mice) were used as controls. Some mice were given antibiotics, and others were raised in a germ-free environment. Intestinal tissues were collected and analyzed by histology and flow cytometry. Feces were collected and analyzed by 16S rDNA sequencing. Feces from C57/Bl6, R23FR, or FR mice were fed to FR and R23FR germ-free mice in microbiota transplant experiments. We also performed studies with R23FR/Rag-/-, R23FR/Mu-/-, and R23FR/Tcrd-/- mice. R23FR mice were given injections of antibodies against CD4 or CD8 to deplete T cells. Mesenteric lymph nodes and large intestine CD4+ cells from R23FR or FR mice in remission from colitis were transferred into Rag-/- mice. CD4+ cells were isolated from donor R23FR mice and recipient Rag-/- mice, and T-cell receptor sequences were determined. RESULTS: Expression of IL23 led to development of a relapsing-remitting colitis that was dependent on the microbiota and CD4+ T cells. The relapses were caused by switching from the conventional diet used in our facility (diet 5053) to the diet 2019 and were not dependent on tamoxifen after the first cycle. The switch in the diet modified the microbiota but did not alter levels of IL23 in intestinal tissues compared with mice that remained on the conventional diet. Mesenteric lymph nodes and large intestine CD4+ cells from R23FR mice in remission, but not from FR mice, induced colitis after transfer into Rag-/- mice, but only when these mice were placed on the diet 2019. The CD4+ T-cell receptor repertoire of Rag-/- mice with colitis (fed the 2019 diet) was less diverse than that from donor mice and Rag-/- mice without colitis (fed the 5053 diet) because of expansion of dominant T-cell clones. CONCLUSIONS: We developed mice that express IL23 in CX3CR1-positive myeloid cells (R23FR mice) and found that they are more susceptible to diet-induced colitis than mice that do not express IL23. The R23FR mice have a population of CD4+ T cells that becomes activated in response to dietary changes and alterations to the intestinal microbiota. The results indicate that alterations in the diet, intestinal microbiota, and IL23 signaling can contribute to pathogenesis of inflammatory bowel disease.


Assuntos
Ração Animal , Linfócitos T CD4-Positivos/metabolismo , Colite/dietoterapia , Colo/metabolismo , Microbioma Gastrointestinal , Interleucina-23/metabolismo , Células Mieloides/metabolismo , Transferência Adotiva , Animais , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/transplante , Receptor 1 de Quimiocina CX3C/metabolismo , Colite/imunologia , Colite/metabolismo , Colite/microbiologia , Colo/imunologia , Colo/microbiologia , Modelos Animais de Doenças , Progressão da Doença , Fezes/microbiologia , Interação Gene-Ambiente , Interações Hospedeiro-Patógeno , Interleucina-23/genética , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Valor Nutritivo , Transdução de Sinais , Fatores de Tempo
14.
Sci Rep ; 7(1): 5520, 2017 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-28710436

RESUMO

Increased expression of Interleukin (IL)-33 has been detected in intestinal samples of patients with ulcerative colitis, a condition associated with increased risk for colon cancer, but its role in the development of colorectal cancer has yet to be fully examined. Here, we investigated the role of epithelial expressed IL-33 during development of intestinal tumors. IL-33 expression was detected in epithelial cells in colorectal cancer specimens and in the Apc Min/+ mice. To better understand the role of epithelial-derived IL-33 in the intestinal tumorigenesis, we generated transgenic mice expressing IL-33 in intestinal epithelial cells (V33 mice). V33 Apc Min/+ mice, resulting from the cross of V33 with Apc Min/+ mice, had increased intestinal tumor burden compared with littermate Apc Min/+ mice. Consistently, Apc Min/+ mice deficient for IL-33 receptor (ST2), had reduced polyp burden. Mechanistically, overexpression of IL-33 promoted expansion of ST2+ regulatory T cells, increased Th2 cytokine milieu, and induced alternatively activated macrophages in the gut. IL-33 promoted marked changes in the expression of antimicrobial peptides, and antibiotic treatment of V33 Apc Min/+ mice abrogated the tumor promoting-effects of IL-33 in the colon. In conclusion, elevated IL-33 signaling increases tumor development in the Apc Min/+ mice.


Assuntos
Proteína da Polipose Adenomatosa do Colo/genética , Transformação Celular Neoplásica/imunologia , Células Epiteliais/metabolismo , Interleucina-33/metabolismo , Neoplasias Intestinais/imunologia , Animais , Transformação Celular Neoplásica/genética , Células Cultivadas , Citocinas/metabolismo , Células Epiteliais/citologia , Regulação Neoplásica da Expressão Gênica , Humanos , Proteína 1 Semelhante a Receptor de Interleucina-1/metabolismo , Interleucina-33/genética , Neoplasias Intestinais/genética , Ativação de Macrófagos , Macrófagos/imunologia , Camundongos , Camundongos Transgênicos , Transdução de Sinais , Linfócitos T Reguladores/imunologia , Células Th2/imunologia , Regulação para Cima
15.
J Tissue Eng Regen Med ; 10(10): E316-E326, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-23955878

RESUMO

Human dermal matrix is a 'self-assembled' dermal equivalent containing large amounts of the glycosaminoglycan hyaluronic acid (hyaluronate, hyaluronan, HA). We sought to investigate the actions of the hormone hydrocortisone on hyaluronate synthesis in the human dermal matrix. To this end, human dermal fibroblasts were cultured under serum-free conditions, and in the absence of a three-dimensional matrix, in the presence of varying amounts of hydrocortisone. The resultant human dermal matrices were characterized. We report that low concentrations of hydrocortisone enhance hyaluronate synthesis in the human dermal equivalent and higher concentrations cause inhibition of hyaluronate synthesis. Other glycosaminoglycan (chondroitin sulphate) synthesis is not affected by changing hydrocortisone concentrations up to 500× (200 µg/ml) of the base value. In order to gain preliminary insight into the molecular mechanism of hyaluronate inhibition, a differential gene array analysis was conducted of human dermal matrix grown in the presence of 200 µg/ml hydrocortisone and in a physiological concentration (0.4 µg/ml, normal conditions). The results of these experiments demonstrate the differential expression of 43 genes in the 500× (200 µg/ml) hydrocortisone construct as compared to the construct grown under normal conditions (0.4 µg/ml hydrocortisone). These preliminary experiments suggest that hydrocortisone at higher concentrations may exert its inhibitory effect on hyaluronate synthesis early in the glycolytic pathway, leading to HA biosynthesis by downregulation of phosphoglucomutase and glucose phosphate isomerase, possibly leading to depletion of the cellular pool of UDP-sugar precursors necessary for HA synthesis. Copyright © 2013 John Wiley & Sons, Ltd.


Assuntos
Derme/metabolismo , Matriz Extracelular/metabolismo , Fibroblastos/metabolismo , Ácido Hialurônico/biossíntese , Hidrocortisona/farmacologia , Linhagem Celular , Sulfatos de Condroitina/biossíntese , Humanos
16.
J Biosci Bioeng ; 119(2): 226-36, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25277518

RESUMO

Hydrocortisone (HC) and triiodothyronine (T3) have both been shown to be capable of independently inhibiting hyaluronate (HA, hyaluronic acid) synthesis in a self-assembled human dermal equivalent (human dermal matrix). We sought to investigate the action of these two hormones in concert on extracellular matrix formation and HA inhibition in the tissue engineered human dermal matrix. To this end, neonatal human dermal fibroblasts were cultured in defined serum-free medium for 21 days in the presence of each hormone alone, or in combination, in varying concentrations. Through a process of self-assembly, a substantial dermal extracellular matrix formed that was characterized. The results of these studies demonstrate that combinations of the hormones T3 and hydrocortisone showed significantly higher levels of hyaluronate inhibition as compared to each hormone alone in the human dermal matrix. In order to gain preliminary insight into the genes regulating HA synthesis in this system, a differential gene array analysis was conducted in which the construct prepared in the presence of 200 µg/mL HC and 0.2 nM T3 was compared to the normal construct (0.4 µg/mL HC and 20 pM T3). Using a GLYCOv4 gene chip containing approximately 1260 human genes, we observed differential expression of 131 genes. These data suggest that when these two hormones are used in concert a different mechanism of inhibition prevails and a combination of degradation and inhibition of HA synthesis may be responsible for HA regulation in the human dermal matrix.


Assuntos
Ácido Hialurônico/biossíntese , Hidrocortisona/farmacologia , Pele Artificial , Engenharia Tecidual , Tri-Iodotironina/farmacologia , Células Cultivadas , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/metabolismo , Fibroblastos/citologia , Perfilação da Expressão Gênica , Glicosaminoglicanos/metabolismo , Humanos , Recém-Nascido , Análise de Sequência com Séries de Oligonucleotídeos
17.
Arch Dermatol Res ; 306(7): 619-33, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24705580

RESUMO

All-trans retinoic acid (ATRA) is known to have beneficial effects on skin. It has been used extensively for the treatment of photodamaged skin. To assess the effects of all-trans retinoic acid on the dermis, specifically its effect on hyaluronate (hyaluronic acid, HA) synthesis and inhibition, tissue-engineered human dermal equivalents were prepared in the presence of varying concentrations of ATRA using the method of "self-assembly". A substantial extracellular matrix was formed at the end of the culture period. The extracellular matrices of these dermal constructs were characterized and compared to the construct prepared in the absence of ATRA (Normal). Inhibition of hyaluronate was observed in constructs prepared in the presence of varying concentrations of all-trans retinoic acid. Chondroitin sulfate synthesis was unaffected up to 1 µM ATRA. Collagen synthesis was enhanced at lower concentrations of ATRA (250 and 500 nM) and inhibited at higher concentrations of ATRA. Differential gene array experiments were performed comparing the construct grown in the presence of 500 nM ATRA to one grown in the absence of ATRA, to obtain preliminary information regarding the gene(s) involved in HA inhibition using a GLYCOv4 gene chip. These preliminary experiments demonstrated the differential expression of 127 genes and suggest that down-regulation of five key enzymes in the HA biosynthetic pathway may be involved in this inhibitory process.


Assuntos
Ácido Hialurônico/biossíntese , Ceratolíticos/farmacologia , Pele Artificial , Pele/efeitos dos fármacos , Tretinoína/farmacologia , Células Cultivadas , Sulfatos de Condroitina/biossíntese , Colágeno/biossíntese , Matriz Extracelular/metabolismo , Fibroblastos/metabolismo , Humanos , Ácido Hialurônico/antagonistas & inibidores , Pele/metabolismo , Pele/ultraestrutura
18.
Adv Drug Deliv Rev ; 65(1): 24-35, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22964425

RESUMO

Significant progress has been made recently in the area of immunoconjugated drugs and drug delivery systems (DDS). The immuno-modification of either the drug or DDS has proven to be a very promising approach that has significantly improved the targeted accumulation in pathological sites while decreasing its undesirable side effects in healthy tissues. The arrangement for both prolonged life in the circulation and specific target recognition represents another potent strategy in the development of immuno-targeted systems. The longevity of immuno-targeted DDS such as immunoliposomes and immunomicelles improves their targetability even in the presence of the additional passive accumulation in areas with a compromised vasculature. The added use of the immuno-targeted systems takes advantage of the specific microenvironment of pathological sites including lowered pH, increased temperature, and variation in the enzymatic activity. "Smart" stimulus-responsive systems combine different valuable functionalities including PEG-protection, targeting antibody, cell-penetration, and stimulus-sensitive functions. In this review we examined the evolution, current status and future directions in the area of therapeutical immunoconjugates and long-circulating immuno-targeted DDS.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Imunoconjugados/administração & dosagem , Imunoconjugados/química , Preparações Farmacêuticas/administração & dosagem , Preparações Farmacêuticas/química , Portadores de Fármacos/administração & dosagem , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos/tendências , Previsões , Humanos , Imunoconjugados/farmacocinética , Lipossomos/administração & dosagem , Lipossomos/química , Lipossomos/farmacocinética , Micelas , Farmacocinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA