Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
1.
Sci Total Environ ; 947: 174432, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38960181

RESUMO

Bioaerosols control techniques, especially ultraviolet germicidal irradiation (UVGI) are gaining attention due to increasing needs for controlling of health risk caused by airborne biocontaminants. The effectiveness of a full-scale in-duct UVGI air disinfection system was investigated. One bacterium, a wild type Escherichia coli, and three fungal spores, Penicillium aragonense, Rhodotorula glutinis, and Cladosporium sp., were selected as test organisms and their inactivation under different conditions representative of a real application in HVAC systems were investigated. The results demonstrated that inactivation of airborne E. coli by the UVGI system was extremely effective, with >99.5 % of the input E. coli inactivated at a residence time lower than 0.36 s in the disinfection section. Airborne fungal spores were less susceptible to UV irradiation than E. coli. Under same conditions, viable counts reduction of P. aragonense, R. glutinis, and Cladosporium sp. spores were 53 %, 63 % and 73 %, respectively. The effect of UV light intensity, air flowrate and relative humidity were analyzed separately. A simplified model based on redefinition of the parameters in the classical inactivation kinetic equation was used to simulate the inactivation of airborne contaminants in the in-duct system under different conditions. The results showed that the simplified model was adequate to estimate disinfection efficacy of different bioaerosols by the UVGI system which could be useful for system design. Overall, this study shows that such in-duct UVGI systems can provide significant control of bioaerosols.


Assuntos
Aerossóis , Microbiologia do Ar , Desinfecção , Esporos Fúngicos , Raios Ultravioleta , Desinfecção/métodos , Aerossóis/análise , Esporos Fúngicos/efeitos da radiação , Escherichia coli/efeitos da radiação , Cladosporium
2.
Ann Biomed Eng ; 52(3): 638-646, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38062312

RESUMO

We demonstrate a methodology which both improves oxygen transport and reduces or eliminates bubble formation in a novel hyperbaric membrane oxygenator catheter model system. Angular oscillations were introduced to a bundle of hollow fiber membranes (HFMs) supplied with hyperbaric 100% oxygen at average gauge pressures up to 0.35 barg. Oscillating bundles enabled delivery of an oxygen flux of up to 400 mL min-1 m-2 in an aqueous solution, a doubling over a previous non-oscillating setup. Similarly, the addition of angular oscillations facilitated a five-fold reduction in pressure to achieve similar oxygen flux. The increased angular speed of oscillation improved flux, while the addition of angular micro-oscillation variations resulted in flux reductions of 7-20% compared to continuous macro-oscillation only, depending on mixing conditions. However, semi-quantitative visual observation demonstrated that angular oscillations reduced or eliminated the instance of oxygen bubble formation on the HFMs. The modeled mass transfer coefficients indicated a quasi linear relationship between rotational velocity and flux, suggesting that faster oscillation speeds could further improve oxygen mass transport allowing for HFM bundles to maintain high oxygen fluxes while eliminating bubble formation. This encourages further development of our compact oxygenating catheter that could be used intravascularly.


Assuntos
Oxigênio , Oxigenadores , Catéteres , Desenho de Equipamento , Oxigenadores de Membrana
3.
J Hazard Mater ; 460: 132264, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37633016

RESUMO

Granular activated carbon (GAC) and anion exchange resin (AIX) have been successfully demonstrated to remove per- and polyfluoroalkyl substances (PFAS) from contaminated water and wastewater. These treatment technologies, when applied for PFAS removal, generate spent media loaded with a high mass of PFAS requiring further treatment and disposal. This project is the first study on the use of supercritical water oxidation (SCWO) to destroy both the spent media and the PFAS adsorbed onto it. One sample of spent GAC and one sample of spent AIX were collected from full-scale groundwater remediation systems treating PFAS. A second spent AIX sample was collected from a mobile PFAS treatment unit. The total PFAS concentrations reported in the GAC, AIX and second AIX feedstock slurries were 0.21 mg/kg, 1.3 mg/kg and 0.9 mg/kg, respectively. Each feedstock was processed separately in a one (1) wet metric ton per day tubular reactor SCWO system. The study demonstrated that SCWO is a very effective PFAS destruction technology for spent GAC and AIX, derived from water remediation systems treating PFAS. The spent media were completely mineralized to water, carbon dioxide (CO2) and a negligible amount of residual minerals. Total target PFAS compound concentrations in the SCWO system effluents after treating spent GAC, AIX and second AIX feedstocks were 548, 77 and 796 ng/L, respectively. The results indicated that the percentage elimination of perfluorocarboxylic acids (PFCAs) was better than that of perfluosulfonic acids (PFSAs) and long-chain PFAS elimination was better than short-chain PFAS.

4.
Environ Technol ; 44(9): 1201-1212, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34726128

RESUMO

An increasing body of literature suggests that aerosol inhalation plays a primary role in COVID-19 transmission, particularly in indoor settings. Mechanistic stochastic models can help public health professionals, engineers, and space planners understand the risk of aerosol transmission of COVID-19 to mitigate it. We developed such model and a user-friendly web application to meet the need of accessible risk assessment tools during the COVID-19 pandemic. We built our model based on the Wells-Riley model of respiratory disease transmission, using quanta emission rates obtained from COVID-19 outbreak investigations. In this report, three modelled scenarios were evaluated and compared to epidemiological studies looking at similar settings: classrooms, weddings, and heavy exercise sessions. We found that the risk of long-range aerosol transmission increased 309-332% when people were not wearing masks, and 424-488% when the room was poorly ventilated in addition to no masks being worn across the scenarios. Also, the risk of transmission could be reduced by ∼40-60% with ventilation rates of 5 ACH for 1-4 h exposure events, and ∼70% with ventilation rates of 10 ACH for 4 h exposure events. Relative humidity reduced the risk of infection (inducing viral inactivation) by a maximum of ∼40% in a 4 h exposure event at 70% RH compared to a dryer indoor environment with 25% RH. Our web application has been used by more than 1000 people in 52 countries as of September 1st, 2021. Future work is needed to obtain SARS-CoV-2 dose-response functions for more accurate risk estimates.


Assuntos
COVID-19 , Humanos , COVID-19/epidemiologia , SARS-CoV-2 , Pandemias , Aerossóis e Gotículas Respiratórios , Medição de Risco
5.
Respir Care ; 67(4): 480-493, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35338096

RESUMO

Acute respiratory failure with inadequate oxygenation and/or ventilation is a common reason for ICU admission in children and adults. Despite the morbidity and mortality associated with acute respiratory failure, few proven treatment options exist beyond invasive ventilation. Attempts to develop intravascular respiratory assist catheters capable of providing clinically important gas exchange have had limited success. Only one device, the IVOX catheter, was tested in human clinical trials before development was halted without FDA approval. Overcoming the technical challenges associated with providing safe and effective gas exchange within the confines of the intravascular space remains a daunting task for physicians and engineers. It requires a detailed understanding of the fundamentals of gas transport and respiratory physiology to optimize the design for a successful device. This article reviews the potential benefits of such respiratory assist catheters, considerations for device design, previous attempts at intravascular gas exchange, and the motivation for continued development efforts.


Assuntos
Síndrome do Desconforto Respiratório , Insuficiência Respiratória , Adulto , Dióxido de Carbono , Criança , Humanos , Troca Gasosa Pulmonar/fisiologia , Respiração , Insuficiência Respiratória/terapia
6.
Sci Total Environ ; 827: 154233, 2022 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-35245543

RESUMO

The aeromicrobiological transmission pathway of enteric pathogens in places with unsafe sanitation services is poorly understood. In an attempt to partly fill this knowledge gap, we assessed the potential public health impact of bioaerosols near open waste canals (OWCs) using Quantitative Microbial Risk Assessment (QMRA). We used data acquired in La Paz, Bolivia to characterize the risk of disease that aerosolized enteric pathogens may pose through food, fomites and inhalation (all followed by ingestion). Three reference pathogens were selected to conduct the assessment: enterotoxigenic Escherichia coli (ETEC), Shigella flexneri, and Campylobacter jejuni. Inhalation followed by ingestion had the highest median infection risk per event i.e. 3 × 10-5 (3 infections for every 100,000 exposures), compared to contaminated food e.g. 5 × 10-6 and fomites e.g. 2 × 10-7, all for C. jejuni infections. Our sensitivity analysis showed that bacterial fluxes from the air were the most influential factor on risk. Our results suggest that fecal bacterial aerosols from OWCs present non-negligible risks of infection in La Paz, with median annual infection risks by C. jejuni being 18 (food), and 100 (inhalation) times greater than the EPA's standard for drinking water (1 × 10-4). We included two of the QMRA models presented here in a novel web application we developed for user-specified application in different contexts.


Assuntos
Escherichia coli , Saneamento , Aerossóis , Cidades , Medição de Risco
7.
Environ Sci Technol ; 55(21): 14758-14771, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34669386

RESUMO

Urban sanitation infrastructure is inadequate in many low-income countries, leading to the presence of highly concentrated, uncontained fecal waste streams in densely populated areas. Combined with mechanisms of aerosolization, airborne transport of enteric microbes and their genetic material is possible in such settings but remains poorly characterized. We detected and quantified enteric pathogen-associated gene targets in aerosol samples near open wastewater canals (OWCs) or impacted (receiving sewage or wastewater) surface waters and control sites in La Paz, Bolivia; Kanpur, India; and Atlanta, USA, via multiplex reverse-transcription qPCR (37 targets) and ddPCR (13 targets). We detected a wide range of enteric targets, some not previously reported in extramural urban aerosols, with more frequent detections of all enteric targets at higher densities in La Paz and Kanpur near OWCs. We report density estimates ranging up to 4.7 × 102 gc per mair3 across all targets including heat-stable enterotoxigenic Escherichia coli, Campylobacter jejuni, enteroinvasive E. coli/Shigella spp., Salmonella spp., norovirus, and Cryptosporidium spp. Estimated 25, 76, and 0% of samples containing positive pathogen detects were accompanied by culturable E. coli in La Paz, Kanpur, and Atlanta, respectively, suggesting potential for viability of enteric microbes at the point of sampling. Airborne transmission of enteric pathogens merits further investigation in cities with poor sanitation.


Assuntos
Criptosporidiose , Cryptosporidium , Aerossóis , Cidades , Escherichia coli , Fezes , Humanos , Saneamento , Águas Residuárias
8.
Sci Total Environ ; 789: 147823, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34082211

RESUMO

On-site sewage treatment systems can be an important source of antibiotic resistant bacteria and organic micropollutants into adjacent groundwater. Due to the frequent proximity of private wells to septic systems, this contamination is a concern to communities that do not have access to public municipal services. In both rural and urban environments, low-income communities, indigenous communities and those of color are disproportionately affected by well contamination. The objective of this study was to assess well water quality in an underserved North Carolina community by performing a comprehensive evaluation of microbial and organic micropollutant occurrence and determining possible sources of contamination. Well water, septic tanks, and adjacent municipal water were sampled. Culture- and molecular biology-based microbial analysis and non-targeted, high resolution mass spectrometry chemical analysis were conducted to assess water quality in comparison to nearby municipal water. Three of thirteen homes had between 1 and 6.3 CFUs/100 mL of E. coli and two homes had fecal bacteria resistant to antibiotics in their well water. The water of four homes showed concentrations of the artificial sweetener sucralose, a wastewater tracer, higher than the municipal water (range ~ 60-1500 ng L-1). The human-specific HF183 fecal marker was detected in 79% of the wells tested. The presence of pharmaceuticals and personal care products in four home wells, along with the presence of pesticides and insecticides in two homes, suggest possible contamination from septic tanks and lawn care runoff. The implications of this work highlight the necessity of wider scale contaminant evaluation of well water.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Monitoramento Ambiental , Escherichia coli , Cromatografia Gasosa-Espectrometria de Massas , Humanos , North Carolina , Qualidade da Água
9.
Am J Trop Med Hyg ; 104(5): 1761-1767, 2021 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-33684068

RESUMO

Understanding the movement of antimicrobial resistance genes (ARGs) in the environment is critical to managing their spread. To assess potential ARG transport through the air via urban bioaerosols in cities with poor sanitation, we quantified ARGs and a mobile integron (MI) in ambient air over periods spanning rainy and dry seasons in Kanpur, India (n = 53), where open wastewater canals (OWCs) are prevalent. Gene targets represented major antibiotic groups-tetracyclines (tetA), fluoroquinolines (qnrB), and beta-lactams (blaTEM)-and a class 1 mobile integron (intI1). Over half of air samples located near, and up to 1 km from OWCs with fecal contamination (n = 45) in Kanpur had detectable targets above the experimentally determined limits of detection (LOD): most commonly intI1 and tetA (56% and 51% of samples, respectively), followed by blaTEM (8.9%) and qnrB (0%). ARG and MI densities in these positive air samples ranged from 6.9 × 101 to 5.2 × 103 gene copies/m3 air. Most (7/8) control samples collected 1 km away from OWCs were negative for any targets. In comparing experimental samples with control samples, we found that intI1 and tetA densities in air are significantly higher (P = 0.04 and P = 0.01, respectively, alpha = 0.05) near laboratory-confirmed fecal contaminated waters than at the control site. These data suggest increased densities of ARGs and MIs in bioaerosols in urban environments with inadequate sanitation. In such settings, aerosols may play a role in the spread of AR.


Assuntos
Aerossóis/análise , Farmacorresistência Bacteriana/genética , Genes Bacterianos , Consórcios Microbianos/genética , Águas Residuárias/microbiologia , Antibacterianos/farmacologia , Cidades , Fluoroquinolonas/farmacologia , Humanos , Índia , Integrons , Reação em Cadeia da Polimerase , Saneamento , Tetraciclinas/farmacologia , Águas Residuárias/análise , Microbiologia da Água , beta-Lactamas/farmacologia
10.
Environ Res ; 194: 110730, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33444611

RESUMO

Antibiotic resistance poses a major global health threat. Understanding emergence and dissemination of antibiotic resistance in environmental media is critical to the design of control strategies. Because antibiotic resistance genes (ARGs) may be aerosolized from contaminated point sources and disseminated more widely in localized environments, we assessed ARGs in aerosols in urban La Paz, Bolivia, where wastewater flows in engineered surface water channels through the densely populated urban core. We quantified key ARGs and a mobile integron (MI) via ddPCR and E. coli spp. as a fecal indicator by culture over two years during both the rainy and dry seasons in sites near wastewater flows. ARG targets represented major antibiotic groups-tetracyclines (tetA), fluoroquinolines (qnrB), and beta-lactams (blaTEM)-and an MI (intI1) represented the potential for mobility of genetic material. Most air samples (82%) had detectable targets above the experimentally determined LOD: most commonly blaTEM and intI1 (68% and 47% respectively) followed by tetA and qnrB (17% and 11% respectively). ARG and MI densities in positive air samples ranged from 1.3 × 101 to 6.6 × 104 gene copies/m3 air. Additionally, we detected culturable E. coli in the air (52% of samples <1 km from impacted surface waters) with an average density of 11 CFU/m3 in positive samples. We observed decreasing density of blaTEM with increasing distance up to 150 m from impacted surface waters. To our knowledge this is the first study conducting absolute quantification and a spatial analysis of ARGs and MIs in ambient urban air of a city with contaminated surface waters. Environments in close proximity to urban wastewater flows in this setting may experience locally elevated concentrations of ARGs, a possible concern for the emergence and dissemination of antimicrobial resistance in cities with poor sanitation.


Assuntos
Antibacterianos , Farmacorresistência Bacteriana , Aerossóis , Antibacterianos/farmacologia , Bolívia , Cidades , Escherichia coli/genética , Genes Bacterianos , Águas Residuárias
11.
Biotechnol Bioeng ; 118(1): 345-356, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32959889

RESUMO

Despite hypoxic respiratory failure representing a large portion of total hospitalizations and healthcare spending worldwide, therapeutic options beyond mechanical ventilation are limited. We demonstrate the technical feasibility of providing oxygen to a bulk medium, such as blood, via diffusion across nonporous hollow fiber membranes (HFMs) using hyperbaric oxygen. The oxygen transfer across Teflon® membranes was characterized at oxygen pressures up to 2 bars in both a stirred tank vessel (CSTR) and a tubular device mimicking intravenous application. Fluxes over 550 ml min-1 m-2 were observed in well-mixed systems, and just over 350 ml min-1 m-2 in flow through tubular systems. Oxygen flux was proportional to the oxygen partial pressure inside the HFM over the tested range and increased with mixing of the bulk liquid. Some bubbles were observed at the higher pressures (1.9 bar) and when bulk liquid dissolved oxygen concentrations were high. High-frequency ultrasound was applied to detect and count individual bubbles, but no increase from background levels was detected during lower pressure operation. A conceptual model of the oxygen transport was developed and validated. Model parametric sensitivity studies demonstrated that diffusion through the thin fiber walls was a significant resistance to mass transfer, and that promoting convection around the fibers should enable physiologically relevant oxygen supply. This study indicates that a device is within reach that is capable of delivering greater than 10% of a patient's basal oxygen needs in a configuration that readily fits intravascularly.


Assuntos
Catéteres , Desenho de Equipamento , Membranas Artificiais , Oxigênio/farmacologia , Oxigenadores , Oxigênio/química
12.
J Environ Manage ; 277: 111361, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-32950778

RESUMO

A mobile septage treatment unit was built in India using readily available filters and membranes (mesh fabric, sand, granular activated carbon (GAC), microfilter, ultrafilter) and installed on the bed of a small truck. The target application was emptying of septic or sewage holding tanks and concentration of suspended solids while generating a liquid that could be discharged. The system was evaluated for operational and treatment performance while processing septage in the field at 108 sites in Tamil Nadu, India. After one phase of evaluation (Phase I), the system was improved and three replicate systems with slight modifications were fabricated for a second round of evaluation (Phase II) alongside the original, but modified unit. In Phase I, 105 m3 of septage was processed at an average flow of 623 L h-1 and with high removal efficiencies: 83% chemical oxygen demand (COD), 75% total suspended solids (TSS), and 98.4% total coliform (TC). In Phase II, the original and three new systems combined treated 168 m3 of septage. One of the new systems doubled in capacity and processed septage at an average flow of 2700 L h-1 while the other three averaged 1290 L h-1. The removal efficiencies in Phase II were 80% COD, 81% TSS, and 99% TC averaged between the four systems. Pass through of soluble contaminants (e.g. soluble COD, NH3-N) remain the primary challenge for treatment performance. Success may be limited with some septage due to seasonality, location, or septage age, and further validation and optimization may be necessary. However, the septage in this study was treated to local standards, and the system offers a method of onsite treatment while reducing the need of costly and often inefficient septage emptying services. Further, the system can be produced at a cost competitive to traditional septage hauling trucks.


Assuntos
Esgotos , Eliminação de Resíduos Líquidos , Análise da Demanda Biológica de Oxigênio , Índia
13.
J Infect Dis ; 222(11): 1798-1806, 2020 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-32905595

RESUMO

During April and May 2020, we studied 20 patients hospitalized with coronavirus disease 2019 (COVID-19), their hospital rooms (fomites and aerosols), and their close contacts for molecular and culture evidence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Among >400 samples, we found molecular evidence of virus in most sample types, especially the nasopharyngeal (NP), saliva, and fecal samples, but the prevalence of molecular positivity among fomites and aerosols was low. The agreement between NP swab and saliva positivity was high (89.5%; κ = 0.79). Two NP swabs collected from patients on days 1 and 7 post-symptom onset had evidence of infectious virus (2 passages over 14 days in Vero E6 cells). In summary, the low molecular prevalence and lack of viable SARS-CoV-2 virus in fomites and air samples implied low nosocomial risk of SARS-CoV-2 transmission through inanimate objects or aerosols.


Assuntos
COVID-19/transmissão , COVID-19/virologia , Fômites/virologia , SARS-CoV-2/fisiologia , Adulto , Aerossóis , Idoso , Idoso de 80 Anos ou mais , Animais , COVID-19/epidemiologia , Chlorocebus aethiops , Microbiologia Ambiental , Fezes/virologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Nasofaringe/virologia , Saliva/virologia , Células Vero , Carga Viral
14.
Environ Sci Technol ; 54(19): 12654-12661, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-32902968

RESUMO

An integrated biotrickling filter-anammox bioreactor system for the complete treatment of ammonia in air with conversion to nitrogen gas without the supply of an extraneous electron donor for denitrification was established. Partial nitritation (i.e., conversion of ammonium to nitrite) was successfully achieved in the biotrickling filter (BTF) through free ammonia (FA) and free nitrous acid (FNA) inhibition on nitrite-oxidizing bacteria (NOB). During transients, while increasing nitrogen loading, FA was the main inhibitor of ammonia-oxidizing bacteria (AOB) and NOB, while during a steady state, it was mainly FNA, which was responsible for inhibitory effects due to the accumulation of nitrite. Ammonia removal by the BTF reached 50 gN m-3 h-1 with 100% removal at an inlet concentration of 404 ppmv and a gas residence time of 21 s. Average removal of ammonia during stable operation was 95%. The anammox bioreactor was slightly undersized compared to the BTF and could remove 75% of total nitrogen discharged by the BTF when the two reactors were connected and liquid was in one-pass mode. This undersizing caused accumulation of nitrite in the system when liquid was circled in a quasi-closed loop, which gradually inhibited the activity of anammox bacteria. Overall, this study demonstrates that ammonia in air can be effectively treated and converted to harmless nitrogen gas without an external electron donor supply using a biotrickling filter combined with an anammox bioreactor.


Assuntos
Amônia , Nitrificação , Reatores Biológicos , Desnitrificação , Nitritos , Nitrogênio , Oxirredução
15.
Chemosphere ; 258: 127286, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32544811

RESUMO

Micro-capillary bioreactors (1 mm ID, 10 cm long) were investigated for the biodegradation of toluene vapors as a model volatile organic compound (VOC). The intended application is the removal of VOCs from indoor air, when such microbioreactor is coupled with a microconcentrator that intermittently delivers high concentrations of VOCs to the bioreactor for effective treatment. The effects of key operating conditions were investigated. Specifically, gas film and liquid film mass transfer coefficients were determined for different gas and liquid velocities. Both mass transfer coefficients increased with gas or liquid velocity, respectively, and the overall gas-liquid mass transfer was dominated by the liquid-side resistance. Experiments with the microbioreactors focused on the effects of gas velocity, liquid velocity and mineral medium renewal rate on the treatment of toluene vapors at different inlet concentrations. The best performance in terms of toluene removal and mineralization to CO2 was obtained when the gas and liquid velocity ratio was close to one and achieving Taylor or slug flow pattern. Sustained treatment over extended periods of time with toluene elimination capacities ranging from 4000 to over 9000 g m-3 h-1 were obtained, which is orders of magnitude greater than conventional biofilters and biotrickling filters. Biological limitations generally played a more important role than mass transfer limitation. Continuous mineral medium supply at a high rate (10 h liquid retention time) enabled pH control and provided ample nutrient supply and therefore resulted in better toluene elimination and mineralization. Overall, these studies helped select the most suitable conditions for high performance and sustained operation.


Assuntos
Poluentes Atmosféricos/química , Reatores Biológicos , Tolueno/química , Compostos Orgânicos Voláteis/química , Biodegradação Ambiental , Desenho de Equipamento , Gases , Concentração de Íons de Hidrogênio
16.
Chemosphere ; 257: 127219, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32512331

RESUMO

There is a great need for simple methods for digestate management for potential household sanitation systems based on anaerobic digestion of minimally diluted fecal waste in countries that lack safe sanitation. Herein, a full-scale three-stage filter for nitrogen and phosphorus removal from anaerobic digester effluent was implemented in Madagascar. It included a trickling filter with crushed charcoal (for aerobic nitrification), a submerged anaerobic filter with bamboo chips (for denitrification), and a submerged filter with scrap iron (for phosphorus removal). All filter materials were sourced locally. Three parallel replicate systems were operated in two sequential 8-week phases for a total of 16 continuous weeks. Though the influent feed was not as expected, with much of nitrogen in the feed coming in as organic N and not as NH3-N, the filters still removed 38-49% of total incoming nitrogen. The filters achieved high rates of nitrogen transformation along with removing solids (73-82% turbidity removal), chemical oxygen demand (67-75% removal), and phosphorus (31-50% removal). Overall, the reaction rates from this full-scale study were in line with previous lab-scale investigations with scaled-down systems, supporting their application in real-world scenarios. Based on this study, simple effluent filters can support nutrient removal for small-scale and onsite fecal sludge treatment systems.


Assuntos
Eliminação de Resíduos Líquidos/métodos , Análise da Demanda Biológica de Oxigênio , Reatores Biológicos , Carvão Vegetal , Desnitrificação , Fezes/química , Humanos , Nitrificação , Nitrogênio/análise , Nutrientes , Fósforo , Esgotos
17.
Sci Total Environ ; 738: 139495, 2020 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-32425257

RESUMO

Evidence of exposure to enteric pathogens through the air and associated risk of infection is scarce in the literature outside of animal- or human-waste handling settings. Cities with poor sanitation are important locations to investigate this aerial exposure pathway as their rapid growth will pose unprecedented challenges in waste management. To address this issue, simple surveillance methods are needed. Therefore, the objectives of this study were to optimize a community exposure bioaerosol surveillance strategy for urban outdoor locations with poor sanitation, and to determine which bioaerosols could contribute to exposure. Passive and active bioaerosol sampling methods were used to characterize the fate and transport of sanitation-related bioaerosols during the rainy and dry seasons in La Paz, Bolivia. Median coliform bacteria fluxes were 71 CFU/(m2 × h) during the rainy season and 64 CFU/(m2 × h) during the dry season, with 38% of the dry season samples testing positive for E. coli. Wind speed, relative humidity and UVB irradiance were identified as significant covariates to consider in bioaerosol transport models in La Paz. Active sampling yielded one positive sample (10%) for human adenovirus (HadV) and one sample (10%) for influenza A virus during the rainy season. HadV was detected at the site with the highest bacterial flux. Four samples (8%) were positive for influenza A virus in the dry season. These findings suggest that aerosols can contribute to community exposure to potentially pathogenic microorganisms in cities with poor sanitation. The use of passive sampling, despite its limitations, can provide quantitative data on microorganisms' viability within realistic timeframes of personal exposure.


Assuntos
Saúde Única , Saneamento , Aerossóis , Microbiologia do Ar , Animais , Bolívia , Cidades , Estudos Transversais , Escherichia coli , Humanos
18.
Chemosphere ; 256: 127078, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32473468

RESUMO

This study investigated the feasibility of co-treating H2S and CO2 in a biological trickling filter (BTF) inoculated with hydrogenotrophic methanogens (HMs) and nitrate-reducing, sulfur-oxidizing bacteria. This was accomplished by introducing a pure culture of Thiobacillus denitrificans in a BTF that was successfully upgrading a biogas mimic (60:40 CH4:CO2) to >97% methane using an enriched HM consortium. Nitrate was fed as the electron acceptor to oxidize H2S. The results revealed that a severe competition for hydrogen's electrons occurred between carbon dioxide and nitrate. Due to this competition, N:S loading rates of 16:1 were required to achieve >98% H2S removal, a ratio which is four times greater than the theoretical N:S ratio for complete sulfur oxidation. However, such high nitrate loading rates (>50 g N-NO3- m-3 h-1) had a negative impact on the BTF's biogas upgrading performance. An electron balance illustrated the increasing diversion of H2 electrons towards nitrate reduction as nitrate loading increased. Overall, this study showed that simultaneous biogas upgrading and H2S removal in a single bioreactor is possible, but that achieving high yields for both reactions requires further research in process and culture optimization.


Assuntos
Biocombustíveis , Dióxido de Carbono/análise , Sulfeto de Hidrogênio/análise , Bactérias , Reatores Biológicos/microbiologia , Hidrogênio , Metano , Nitratos
19.
Sensors (Basel) ; 20(10)2020 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-32443709

RESUMO

Technology innovation in sanitation is needed for the 4.2 billion people worldwide, lacking safely managed sanitation services. A major requirement for the adoption of these technologies is the management of malodor around toilet and treatment systems. There is an unmet need for a low-cost instrumented technology for detecting the onset of sanitation malodor and triggering corrective actions. This study combines sensory data with low-cost gas sensor data on malodor emanating from feces. The response of 10 commercial electrochemical gas sensors was collected alongside olfactometric measurements. Odor from fecal specimens at different relevant dilution as well as specimens with pleasant odors as a control were evaluated for a total of 64 responses. Several of the sensors responded positively to the fecal odor, with the formaldehyde, hydrogen sulfide, and ammonia sensors featuring the highest signal to noise ratio. A positive trend was observed between the sensors' responses and the concentration of the odorant and with odor intensity, but no clear correspondence with dilution to threshold (D/T) values was found. Selected sensors were responsive both above and below the intensity values used as the cutoff for offensive odor, suggesting the possibility of using those sensors to differentiate odor offensiveness based just on the magnitude of their response. The specificity of the sensors suggested that discrimination between the selected non-fecal and fecal odors was possible. This study demonstrates that some of the evaluated sensors could be used to assemble a low-cost malodor warning system.


Assuntos
Amônia/análise , Técnicas Eletroquímicas/instrumentação , Fezes/química , Sulfeto de Hidrogênio/análise , Odorantes/análise , Humanos , Saneamento/instrumentação
20.
Sci Total Environ ; 712: 135509, 2020 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-31801654

RESUMO

Simple trickling nitrification filters and submerged denitrification filters were developed to provide post-treatment to high-strength human waste anaerobic digestate with the aims to (i) effectively recover nutrients in a useful form as a fertilizer and to (ii) treat digestate such that it could be reused as flush water in water scarce regions. The tested filter media (biochar, granular activated carbon, rice and coconut husks, bamboo chips, sunflower seeds, and zeolite) are low cost and sustainable materials and can be locally sourced where on-site sanitation facilities are in high demand. Experimental data from laboratory operation with digestate from anaerobic digestion of dog feces and human urine revealed that the filters achieved a combined removal of chemical oxygen demand (COD), total nitrogen (TN), and phosphorus (PO4-P) up to 84%, 69%, and 89%, respectively. Post-treatment filters have also demonstrated successful recovery of vital nutrients by precipitating ammonium magnesium phosphate hydrate, a documented valuable slow-release solid fertilizer. These filters have a great potential for advancing access to improved sanitation while simultaneously increasing capacity for small-scale economic agricultural development in geographic regions lacking improved sanitation.


Assuntos
Desnitrificação , Nitrificação , Anaerobiose , Animais , Reatores Biológicos , Cães , Humanos , Nitrogênio , Fósforo , Eliminação de Resíduos Líquidos , Águas Residuárias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA