RESUMO
The design of two-photon absorbing azobenzene (AB) derivatives has received much attention; however, the two-photon absorption (2PA) properties of bis-conjugated azobenzene systems are relatively less explored. Here, we present the synthesis of six azobenzene derivatives and three bis-azobenzenes substituted (or not) at para position(s) with one or two amino group(s). Their linear and nonlinear absorption properties are studied experimentally and theoretically. The switching behavior and thermal stability of the Z-isomer are studied for unsubstituted mono- (1a, 2a) and bis-azobenzene (3a) compounds, showing that when the length of the π system increases, the half-life of the Z-isomer decreases. Moreover, along with the increase of π-conjugation, the photochromic characteristics are impaired and the photostationary state (PSS) related to E-Z photoisomerization is composed of 89% of the Z-isomer for 2a and 26% of the Z-isomer for 3a. Importantly, the 2PA cross-section increases almost five-fold on extending the π-conjugation (2a vs 3a) and by about one order of magnitude when comparing two systems: the unsubstituted π-electron one (2a, 3a) with D-π-D (2c, 3c). This work clarifies the contribution of π-conjugation and substituent effects to the linear and nonlinear optical properties of mono- and bis-azobenzene compounds based on the experimental and theoretical approaches.
Assuntos
Compostos Azo , Elétrons , Naftalenos , FótonsRESUMO
The one- and two-photon absorption (1PA and 2PA) properties of three expanded aceneporphyrinoids, 28-thia-, 28-selena- and 28-tellura-2,7-naphthiporphyrin, have been studied. The open-aperture Z-scan technique was used to determine two-photon absorption cross-sections in the near infrared range using an amplified femtosecond laser system. The maximum values of the cross sections were found to be 99, 200 and 650 GM at 900 nm and 1, 13 and 31 GM at 1400 nm for the three investigated compounds, respectively. These results demonstrate enhanced 2PA properties compared with well-known porphyrin photosensitizers, such as Foscan®, showing the potential of porphyrin core modification for optimizing infrared nonlinear absorbers.
RESUMO
Herein we describe a novel spinning pump-probe photoacoustic technique developed to study nonlinear absorption in thin films. As a test case, an organic polycrystalline thin film of quinacridone, a well-known pigment, with a thickness in the tens of nanometers range, is excited by a femtosecond laser pulse which generates a time-domain Brillouin scattering signal. This signal is directly related to the strain wave launched from the film into the substrate and can be used to quantitatively extract the nonlinear optical absorption properties of the film itself. Quinacridone exhibits both quadratic and cubic laser fluence dependence regimes which we show to correspond to two- and three-photon absorption processes. This technique can be broadly applied to materials that are difficult or impossible to characterize with conventional transmittance-based measurements including materials at the nanoscale, prone to laser damage, with very weak nonlinear properties, opaque, or highly scattering.
RESUMO
Chiral nanomaterials attract broad attention, as they offer new possibilities of modulation of optical properties and dissymmetry factors outperforming organic materials. Among various nanoparticles, plasmonic bipyramids present numerous advantages as building blocks of chiral nanomaterials (well-defined modulation of optical properties with the morphology of nanoparticles, narrow optical resonances, and high size and shape uniformity of synthesized particles). We study different possible orientations of gold bipyramids with respect to each other in dimers obtained by wet chemistry methods. For circularly polarized incident light we evaluate linear optical cross sections and plasmonic local field enhancement using COMSOL Multiphysics. We observe coupling of the nanoparticles' local fields and thus changes in extinction spectra, which modulate chiroptical properties of dimers. To assess the chirality of various arrangements, we note differences in cross sections for left- and right-handed polarized light which we further evaluate as the dissymmetry g-factor. Our results provide BPs configurations with dissymmetry factor as high as -0.3.