RESUMO
Synthesis of silver nanoparticles (Ag NPs) using microalgae is gaining recognition for its environmentally friendly and cost-effective nature while maintaining high activity of NPs. In the present study, Ag NPs were synthesized using a methanolic extract of Chlorella vulgaris and subjected to calcination. The X-ray diffraction (XRD) analysis showed a crystalline nature of the products with Ag2O and Ag phases with an average crystalline size of 16.07 nm before calcination and an Ag phase with 24.61 nm crystalline size after calcination. Fourier transform infrared spectroscopy (FTIR) revealed the capping functional groups on Ag NPs, while scanning electron microscopy (SEM) displayed their irregular morphology and agglomeration after calcination. The organic coating was examined by energy-dispersive X-ray spectroscopy (EDX) and thermogravimetric (TGA) analyses, confirming the involvement of the metabolites. The UV-Vis analysis showed a difference in optical properties due to calcination. Synthesized Ag NPs were applied for the photodegradation of hazardous dye Brilliant Blue R in visible light. Different values of light intensity, catalyst dose, initial dye concentration, and pH were tested to identify the optimal set of operating conditions. The highest degradation efficiency of 90.6% with an apparent rate constant of 0.04402 min-1 was achieved after 90 min of irradiation in the highest tested catalyst dosage.
Assuntos
Chlorella vulgaris , Nanopartículas Metálicas , Prata , Prata/química , Nanopartículas Metálicas/química , Catálise , Fotólise , Espectroscopia de Infravermelho com Transformada de Fourier , BenzenossulfonatosRESUMO
Magnetic scaffolds (MagSs) are magneto-responsive devices obtained by the combination of traditional biomaterials (e.g., polymers, bioceramics, and bioglasses) and magnetic nanoparticles. This work analyzes the literature about MagSs used as drug delivery systems for tissue repair and cancer treatment. These devices can be used as innovative drugs and/or biomolecules delivery systems. Through the application of a static or dynamic stimulus, MagSs can trigger drug release in a controlled and remote way. However, most of MagSs used as drug delivery systems are not optimized and properly modeled, causing a local inhomogeneous distribution of the drug's concentration and burst release. Few physical-mathematical models have been presented to study and analyze different MagSs, with the lack of a systematic vision. In this work, we propose a modeling framework. We modeled the experimental data of drug release from different MagSs, under various magnetic field types, taken from the literature. The data were fitted to a modified Gompertz equation and to the Korsmeyer-Peppas model (KPM). The correlation coefficient (R2) and the root mean square error (RMSE) were the figures of merit used to evaluate the fitting quality. It has been found that the Gompertz model can fit most of the drug delivery cases, with an average RMSE below 0.01 and R2>0.9. This quantitative interpretation of existing experimental data can foster the design and use of MagSs for drug delivery applications.
RESUMO
Carasau bread is a flat bread, typical of Sardinia (Italy). The market of this food product has a large growth potential, and its industry is experiencing a revolution, characterized by digitalization and automation. To monitor the quality of this food product at different manufacturing stages, microwave sensors and devices could be a cost-effective solution. In this framework, knowledge of the microwave response of Carasau dough is required. Thus far, the analysis of the microwave response of Carasau doughs through dielectric spectroscopy has been limited to the dynamics of fermentation. In this work, we aim to perform complex dielectric permittivity measurements up to 8.5 GHz, investigating and modeling the role of water amount, salt and yeast concentrations on the spectra of this food product. A third-order Cole-Cole model was used to interpret the microwave response of the different samples, resulting in a maximum error of 1.58% and 1.60% for the real and imaginary parts of permittivity, respectively. Thermogravimetric analysis was also performed to support the microwave spectroscopy investigation. We found that dielectric properties of Carasau bread doughs strongly depend on the water content. The analysis highlighted that an increase in water quantity tends to increase the bounded water fraction at the expense of the free water fraction. In particular, the free water amount in the dough is not related to the broadening parameter γ2 of the second pole, whereas the bound water weight fraction is more evident in the γ2 and σdc parameters. An increase in electrical conductivity was observed for increasing water content. The microwave spectrum of the real part of the complex permittivity is slightly affected by composition, while large variation in the imaginary part of the complex dielectric permittivity can be identified, especially for frequencies below 4 GHz. The methodology and data proposed and reported in this work can be used to design a microwave sensor for retrieving the composition of Carasau bread doughs through their dielectric signature.
RESUMO
Magnetic scaffolds have been investigated as promising tools for the interstitial hyperthermia treatment of bone cancers, to control local recurrence by enhancing radio- and chemotherapy effectiveness. The potential of magnetic scaffolds motivates the development of production strategies enabling tunability of the resulting magnetic properties. Within this framework, deposition and drop-casting of magnetic nanoparticles on suitable scaffolds offer advantages such as ease of production and high loading, although these approaches are often associated with a non-uniform final spatial distribution of nanoparticles in the biomaterial. The implications and the influences of nanoparticle distribution on the final therapeutic application have not yet been investigated thoroughly. In this work, poly-caprolactone scaffolds are magnetized by loading them with synthetic magnetic nanoparticles through a drop-casting deposition and tuned to obtain different distributions of magnetic nanoparticles in the biomaterial. The physicochemical properties of the magnetic scaffolds are analyzed. The microstructure and the morphological alterations due to the reworked drop-casting process are evaluated and correlated to static magnetic measurements. THz tomography is used as an innovative investigation technique to derive the spatial distribution of nanoparticles. Finally, multiphysics simulations are used to investigate the influence on the loading patterns on the interstitial bone tumor hyperthermia treatment.
Assuntos
Neoplasias Ósseas , Alicerces Teciduais , Materiais Biocompatíveis/química , Neoplasias Ósseas/diagnóstico por imagem , Neoplasias Ósseas/terapia , Humanos , Fenômenos Magnéticos , Magnetismo , Engenharia Tecidual/métodos , Alicerces Teciduais/químicaRESUMO
The present case study reports a shear rheological characterization in the temperature domain of inks and pastes loaded with conductive High Reactivity Carbonaceous Material (HRCM) consisting mainly of few-layers graphene sheets. The combined effect of filler concentration and applied shear rate is investigated in terms of the shear viscosity response as a function of testing temperature. The non-Newtonian features of shear flow ramps at constant temperature are reported to depend on both the HRCM load and the testing temperature. Moreover, temperature ramps at a constant shear rate reveal a different viscosity-temperature dependence from what is observed in shear flow ramps while maintaining the same filler concentration. An apparent departure from the well-known Vogel-Fulcher-Tamman relationship as a function of the applied shear rate is also reported.