Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Steroids ; 184: 109036, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35413338

RESUMO

Substantial data posit estrogen receptors (ERs) as promising targets for prostate cancer (PCa) therapeutics. However, the trials on assessing the chemo-preventive or therapeutic potential of ER targeting drugs or selective estrogen receptor modulators (SERMs) have not yet established their clinical benefits. This could be ascribed to a possible modulation in the ER expression during PCa progression. Further it is warranted to test various ER targeting drugs in appropriate preclinical models that simulate human ER expression pattern during PCa progression. The study was undertaken to revisit the existing data on the epithelial ER expression pattern in human cancerous prostates and experimentally determine whether these patterns are replicated in TRAMP (Transgenic Adenocarcinoma of Mouse Prostate) mice, a model for human PCa. Estradiol (E2) binding to the plasma membrane of the epithelial cells and its modulation during the PCa progression in TRAMP were also investigated. A reassessment of the existing data revealed a trend towards downregulation in the epithelial expression of wild-type ESR1 transcripts in high-grade PCa, compared to non-cancerous prostate in humans. Next, epithelial cell-enriched populations from TRAMP prostates (TP) displaying low-grade prostatic intraepithelial neoplasia (LGPIN), high-grade PIN (HGPIN), HGPIN with well-differentiated carcinoma (PIN + WDC), WDC (equivalent to grade 2/3 human PCa), and poorly-differentiated carcinoma (PDC-equivalent to grade 4/5 human PCa) revealed significantly higher Esr1 and Esr2 levels in HGPIN and significantly reduced levels in WDC, compared to respective age-matched control prostates. These patterns for the nuclear ERs were similar to the trend shown by E2 binding to the plasma membrane of the epithelial cells during PCa progression in TRAMP. E2 binding to epithelial cells (EpCAM+), though significantly higher in TPs displaying LGPIN, decreased significantly as the disease progressed to WDC. The study highlights a reduction in the epithelial ESR level with the PCa progression and this pattern was evident in both humans and TRAMP. These observations may have major implications in refining PCa therapeutics targeting ER.


Assuntos
Neoplasia Prostática Intraepitelial , Neoplasias da Próstata , Animais , Progressão da Doença , Células Epiteliais/metabolismo , Estrogênios/metabolismo , Humanos , Masculino , Camundongos , Próstata/metabolismo , Próstata/patologia , Neoplasia Prostática Intraepitelial/metabolismo , Neoplasia Prostática Intraepitelial/patologia , Neoplasias da Próstata/metabolismo , Receptores de Estrogênio/genética , Receptores de Estrogênio/metabolismo
2.
Reproduction ; 163(2): 95-105, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34990400

RESUMO

Recent data suggest that the DNA damage response (DDR) is altered in the eutopic endometrium (EE) of women with endometriosis and this probably ensues in response to higher DNA damage encountered by the EE in endometriosis. DDR operates in a tissue-specific manner and involves different pathways depending on the type of DNA lesions. Among these pathways, the non-homologous end joining (NHEJ) pathway plays a critical role in the repair of dsDNA breaks. The present study was undertaken to explore whether NHEJ is affected in the EE of women with endometriosis. Toward this, we focused on the X-ray repair cross-complementing 4 (XRCC4) protein, one of the core components of the NHEJ pathway. Endometrial XRCC4 protein levels in the mid-proliferative phase were found significantly (P < 0.05) downregulated in women with endometriosis, compared to control women. Investigation of a microarray-based largest dataset in the Gene Expression Omnibus database (GSE51981) revealed a similar trend at the transcript level in the EE of women with endometriosis, compared to control women. Further in vitro studies were undertaken to explore the effects of H2O2-induced oxidative stress on DNA damage, as assessed by γ-H2AX and 8-hydroxy-2'-deoxyguanosine (8-OHdG) immunolocalization, and XRCC4 protein levels in endometrial stromal (hTERT immortalized human endometrial stromal cell line (ThESCs)) and epithelial (Ishikawa) cells. A significant decrease in XRCC4 protein levels and significantly higher localization of γ-H2AX and 8-OHdG were evident in ThESCs and Ishikawa cells experiencing oxidative stress. Overall, the study demonstrates that the endometrial XRCC4 expression is dysregulated in women with endometriosis and this could be due to higher oxidative stress in endometriosis.


Assuntos
Complemento C4 , Proteínas de Ligação a DNA/metabolismo , Endometriose , Complemento C4/metabolismo , Endometriose/patologia , Endométrio/metabolismo , Feminino , Humanos , Peróxido de Hidrogênio/metabolismo
3.
Hum Reprod ; 36(1): 160-174, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33246341

RESUMO

STUDY QUESTION: Is the DNA damage response (DDR) dysregulated in the eutopic endometrium of women with endometriosis? SUMMARY ANSWER: Endometrial expression of genes involved in DDR is modulated in women with endometriosis, compared to those without the disease. WHAT IS KNOWN ALREADY: Ectopic endometriotic lesions are reported to harbour somatic mutations, thereby hinting at dysregulation of DDR and DNA repair pathways. However, it remains inconclusive whether the eutopic endometrium also manifests dysregulated DDR in endometriosis. STUDY DESIGN, SIZE, DURATION: For this case-control study conducted between 2015 and 2019, eutopic endometrial (E) samples (EE- from women with endometriosis, CE- from women without endometriosis) were collected in either mid-proliferative (EE-MP, n = 23; CE-MP, n = 17) or mid-secretory (EE-MS, n = 17; CE-MS, n = 9) phases of the menstrual cycle. This study compares: (i) DNA damage marker localization, (ii) expression of DDR genes and (iii) expression of DNA repair genes in eutopic endometrial samples from women with and without endometriosis. PARTICIPANTS/MATERIALS, SETTING, METHODS: The study included (i) 40 women (aged 31.9 ± 0.81 years) with endometriosis and (ii) 26 control women (aged 31.4 ± 1.02 years) without endometriosis. Eutopic endometrial samples from the two groups were divided into different parts for histological analysis, immunohistochemistry, RNA extraction, protein extraction and comet assays. Eighty-four genes of relevance in the DNA damage signalling pathway were evaluated for their expression in eutopic endometrial samples, using RT2 Profiler PCR arrays. Validations of the expression of two GADD (Growth Arrest DNA Damage Inducible) proteins - GADD45A and GADD45G were carried out by immunoblotting. DNA damage was assessed by immunohistochemical localization of γ-H2AFX (a phosphorylated variant of histone H2AX) and 8-OHdG (8-hydroxy-2'-deoxyguanosine). RNA sequencing data from mid-proliferative (EE-MP, n = 4; CE-MP, n = 3) and mid-secretory phase (EE-MS and CE-MS, n = 4 each) endometrial samples were scanned to compare the expression status of all the genes implicated in human DNA repair. PCNA (Proliferating Cell Nuclear Antigen) expression was determined to assess endometrial proliferation. Residual DNA damage in primary endometrial cells was checked by comet assays. Public datasets were also scanned for the expression of DDR and DNA repair genes as our RNASeq data were limited by small sample size. All the comparisons were made between phase-matched endometrial samples from women with and without endometriosis. MAIN RESULTS AND THE ROLE OF CHANCE: Endometrial expression of DDR genes and intensity of immunolocalized γ-H2AFX were significantly (P < 0.05) higher in EE, compared to CE samples. DDR proteins, especially those belonging to the GADD family, were found to be differentially abundant in EE, as compared to CE. These patterns were evident in both mid-proliferative and mid-secretory phases. Intriguingly, higher DDR was associated with increased cell proliferation in EE-MP, compared to CE-MP. Furthermore, among the differentially expressed transcripts (DETs) encoded by DNA repair genes, the majority showed up-regulation in EE-MP, compared to CE-MP. Interestingly, CE-MP and EE-MP had a comparable percentage (P > 0.05) of cells with residual DNA damage. However, unlike the mid-proliferative phase data, many DETs encoded by DNA repair genes were down-regulated in EE-MS, compared to CE-MS. An analysis of the phase-matched control and endometriosis samples included in the GSE51981 dataset available in the Gene Expression Omnibus database also revealed significant (P < 0.05) alterations in the expression of DDR and DNA repair genes in EE, compared to CE. LARGE-SCALE DATA: N/A. LIMITATIONS, REASONS FOR CAUTION: The study was conducted on a limited number of endometrial samples. Also, the study does not reveal the causes underlying dysregulated DDR in the eutopic endometrium of women with endometriosis. WIDER IMPLICATIONS OF THE FINDINGS: Alterations in the expression of DDR and DNA repair genes indirectly suggest that eutopic endometrium, as compared to its healthy counterpart, encounters DNA damage-inducing stimuli, either of higher strength or for longer duration in endometriosis. It will be worthwhile to identify the nature of such stimuli and also explore the role of higher genomic insults and dysregulated DDR/DNA repair in the origin and/or progression of endometriosis. STUDY FUNDING/COMPETING INTEREST(S): The study was supported by the Department of Biotechnology and Indian Council of Medical Research, Government of India. No conflict of interest is declared.


Assuntos
Endometriose , Adulto , Estudos de Casos e Controles , Dano ao DNA , Endometriose/genética , Endométrio , Feminino , Humanos , Índia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA