Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
3.
Nature ; 623(7988): 772-781, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37968388

RESUMO

Mouse models are a critical tool for studying human diseases, particularly developmental disorders1. However, conventional approaches for phenotyping may fail to detect subtle defects throughout the developing mouse2. Here we set out to establish single-cell RNA sequencing of the whole embryo as a scalable platform for the systematic phenotyping of mouse genetic models. We applied combinatorial indexing-based single-cell RNA sequencing3 to profile 101 embryos of 22 mutant and 4 wild-type genotypes at embryonic day 13.5, altogether profiling more than 1.6 million nuclei. The 22 mutants represent a range of anticipated phenotypic severities, from established multisystem disorders to deletions of individual regulatory regions4,5. We developed and applied several analytical frameworks for detecting differences in composition and/or gene expression across 52 cell types or trajectories. Some mutants exhibit changes in dozens of trajectories whereas others exhibit changes in only a few cell types. We also identify differences between widely used wild-type strains, compare phenotyping of gain- versus loss-of-function mutants and characterize deletions of topological associating domain boundaries. Notably, some changes are shared among mutants, suggesting that developmental pleiotropy might be 'decomposable' through further scaling of this approach. Overall, our findings show how single-cell profiling of whole embryos can enable the systematic molecular and cellular phenotypic characterization of mouse mutants with unprecedented breadth and resolution.


Assuntos
Deficiências do Desenvolvimento , Embrião de Mamíferos , Mutação , Fenótipo , Análise da Expressão Gênica de Célula Única , Animais , Camundongos , Núcleo Celular/genética , Deficiências do Desenvolvimento/genética , Deficiências do Desenvolvimento/patologia , Embrião de Mamíferos/metabolismo , Embrião de Mamíferos/patologia , Mutação com Ganho de Função , Genótipo , Mutação com Perda de Função , Modelos Genéticos , Modelos Animais de Doenças
7.
Nat Genet ; 51(8): 1263-1271, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31358994

RESUMO

The genome is organized in three-dimensional units called topologically associating domains (TADs), through a process dependent on the cooperative action of cohesin and the DNA-binding factor CTCF. Genomic rearrangements of TADs have been shown to cause gene misexpression and disease, but genome-wide depletion of CTCF has no drastic effects on transcription. Here, we investigate TAD function in vivo in mouse limb buds at the Sox9-Kcnj2 locus. We show that the removal of all major CTCF sites at the boundary and within the TAD resulted in a fusion of neighboring TADs, without major effects on gene expression. Gene misexpression and disease phenotypes, however, were achieved by redirecting regulatory activity through inversions and/or the repositioning of boundaries. Thus, TAD structures provide robustness and precision but are not essential for developmental gene regulation. Aberrant disease-related gene activation is not induced by a mere loss of insulation but requires CTCF-dependent redirection of enhancer-promoter contacts.


Assuntos
Fator de Ligação a CCCTC/metabolismo , Proteínas de Ciclo Celular/metabolismo , Montagem e Desmontagem da Cromatina , Proteínas Cromossômicas não Histona/metabolismo , Elementos Facilitadores Genéticos , Regulação da Expressão Gênica no Desenvolvimento , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Fatores de Transcrição SOX9/metabolismo , Animais , Fator de Ligação a CCCTC/genética , Proteínas de Ciclo Celular/genética , Proteínas Cromossômicas não Histona/genética , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Canais de Potássio Corretores do Fluxo de Internalização/genética , Regiões Promotoras Genéticas , Fatores de Transcrição SOX9/genética , Coesinas
8.
Nat Cell Biol ; 21(3): 305-310, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30742094

RESUMO

Balanced chromosomal rearrangements such as inversions and translocations can cause congenital disease or cancer by inappropriately rewiring promoter-enhancer contacts1,2. To study the potentially pathogenic consequences of balanced chromosomal rearrangements, we generated a series of genomic inversions by placing an active limb enhancer cluster from the Epha4 regulatory domain at different positions within a neighbouring gene-dense region and investigated their effects on gene regulation in vivo in mice. Expression studies and high-throughput chromosome conformation capture from embryonic limb buds showed that the enhancer cluster activated several genes downstream that are located within asymmetric regions of contact, the so-called architectural stripes3. The ectopic activation of genes led to a limb phenotype that could be rescued by deleting the CCCTC-binding factor (CTCF) anchor of the stripe. Architectural stripes appear to be driven by enhancer activity, because they do not form in mouse embryonic stem cells. Furthermore, we show that architectural stripes are a frequent feature of developmental three-dimensional genome architecture often associated with active enhancers. Therefore, balanced chromosomal rearrangements can induce ectopic gene expression and the formation of asymmetric chromatin contact patterns that are dependent on CTCF anchors and enhancer activity.


Assuntos
Inversão Cromossômica , Elementos Facilitadores Genéticos/genética , Regulação da Expressão Gênica no Desenvolvimento , Botões de Extremidades/metabolismo , Animais , Fator de Ligação a CCCTC/genética , Fator de Ligação a CCCTC/metabolismo , Cromossomos de Mamíferos/genética , Genômica/métodos , Botões de Extremidades/embriologia , Camundongos , Receptor EphA4/genética , Receptor EphA4/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA