Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nanotechnology ; 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38964286

RESUMO

Increasing quantum confinement in semiconductor quantum dot systems is essential to perform robust simulations of many-body physics. By combining molecular beam epitaxy and lithographic techniques, we developed an approach consisting of a twofold selective area growth to build quantum dot chains. Starting from 15 nm-thick and 65 nm-wide in-plane In0.53Ga0.47As nanowires on InP substrates, linear arrays of In0.53Ga0.47As quantum dots were grown on top, with tunable lengths and separations. Kelvin probe force microscopy performed at room temperature revealed a change of quantum confinement in chains with decreasing quantum dot sizes, which was further emphasized by the spectral shift of quantum levels resolved in the conduction band with low temperature scanning tunneling spectroscopy. This approach, which allows the controlled formation of 25 nm-thick quantum dots with a minimum length and separation of 30 nm and 22 nm respectively, is suitable for the construction of scalable fermionic quantum lattices. .

2.
Rev Sci Instrum ; 94(12)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38051176

RESUMO

Raman spectroscopy is well-suited for the characterization of semiconductor materials. However, due the weakness of the Raman signal, the studies of thin semiconductor layers in complex environments, such as ultrahigh vacuum, are rather scarce. Here, we have designed a Raman apparatus based on the use of a fiber optic probe, with a lens collecting the backscattered light directly inserted in ultrahigh vacuum. The solution has been tested for the preparation of III-V semiconductor surfaces, which requires the recovery of their atomic reconstruction. The surfaces were either protected with a thin As amorphous layer or covered with a native oxide prior to their treatment. The analysis of the Raman spectra, which was correlated with the study of the surfaces with low temperature scanning tunneling microscopy at the end of the cleaning process, shows the high potential of Raman spectroscopy for monitoring the cleanliness of III-V semiconductor heterostructures in situ.

3.
J Chem Phys ; 158(9): 094702, 2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36889960

RESUMO

Narrow bandgap nanocrystals (NCs) are now used as infrared light absorbers, making them competitors to epitaxially grown semiconductors. However, these two types of materials could benefit from one another. While bulk materials are more effective in transporting carriers and give a high degree of doping tunability, NCs offer a larger spectral tunability without lattice-matching constraints. Here, we investigate the potential of sensitizing InGaAs in the mid-wave infrared throughout the intraband transition of self-doped HgSe NCs. Our device geometry enables the design of a photodiode remaining mostly unreported for intraband-absorbing NCs. Finally, this strategy allows for more effective cooling and preserves the detectivity above 108 Jones up to 200 K, making it closer to cryo-free operation for mid-infrared NC-based sensors.

4.
Nano Lett ; 21(1): 680-685, 2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-33337891

RESUMO

Electron states in semiconductor materials can be modified by quantum confinement. Adding to semiconductor heterostructures the concept of lateral geometry offers the possibility to further tailor the electronic band structure with the creation of unique flat bands. Using block copolymer lithography, we describe the design, fabrication, and characterization of multiorbital bands in a honeycomb In0.53Ga0.47As/InP heterostructure quantum well with a lattice constant of 21 nm. Thanks to an optimized surface quality, scanning tunnelling spectroscopy reveals the existence of a strong resonance localized between the lattice sites, signature of a p-orbital flat band. Together with theoretical computations, the impact of the nanopatterning imperfections on the band structure is examined. We show that the flat band is protected against the lateral and vertical disorder, making this industry-standard system particularly attractive for the study of exotic phases of matter.

5.
Nanotechnology ; 30(3): 035301, 2019 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-30452388

RESUMO

In this paper we report on the fabrication and electrical characterization of InAs-on-nothing metal-oxide-semiconductor field-effect transistor composed of a suspended InAs channel and raised InAs n+ contacts. This architecture is obtained using 3D selective and localized molecular beam epitaxy on a lattice mismatched InP substrate. The suspended InAs channel and InAs n+ contacts feature a reproducible and uniform shape with well-defined 3D sidewalls. Devices with 1 µm gate length present a saturation drain current (I Dsat) of 300 mA mm-1 at V DS = 0.8 V and a trans-conductance (GM ) of 120 mS mm-1 at V DS = 0.5 V. In terms of electrostatic control, the devices display a minimal subthreshold swing of 110 mV dec-1 at V DS = 0.5 V and a small drain induced barrier lowering of 50 mV V-1.

6.
Sci Rep ; 8(1): 3017, 2018 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-29445196

RESUMO

A counter-intuitive behavior analogous to the Braess paradox is encountered in a two-terminal mesoscopic network patterned in a two-dimensional electron system (2DES). Decreasing locally the electron density of one channel of the network paradoxically leads to an increased network electrical conductance. Our low temperature scanning gate microscopy experiments reveal different occurrences of such puzzling conductance variations, thanks to tip-induced localized modifications of electron flow throughout the network's channels in the ballistic and coherent regime of transport. The robustness of the puzzling behavior is inspected by varying the global 2DES density, magnetic field and the tip-surface distance. Depending on the overall 2DES density, we show that either Coulomb Blockade resonances due to disorder-induced localized states or Fabry-Perot interferences tuned by the tip-induced electrostatic perturbation are at the origin of transport inefficiencies in the network, which are lifted when gradually closing one channel of the network with the tip.

7.
Nanotechnology ; 28(22): 225601, 2017 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-28480873

RESUMO

This work presents a detailed study of GaSb quantum dot (QD) epitaxy on (001) GaP substrates by means of molecular beam epitaxy. Despite the large mismatch between GaP and GaSb, we show that in the nucleation-diffusion regime, the QD size distribution follows the predictions of the scaling theory. Scanning transmission electron microscopy analysis of grown QDs reveal that they are plastically relaxed by 60° pairs of misfit dislocations and the valence band offset measured by x-ray photoelectron spectroscopy on such QDs amounts to 0.5 eV. After capping, the QD morphology is strongly modified with a large P/Sb exchange-segregation reaction, which even leads to the formation of core-shell nanostructures. Remarkably the resulting QD layer is coherent to the substrate without any remaining misfit dislocation and exhibits still strong composition modulations.

8.
ScientificWorldJournal ; 2014: 136340, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24707193

RESUMO

We report on high frequency (HF) and noise performances of AlSb/InAs high electron mobility transistor (HEMT) with 100 nm gate length at room temperature in low-power regime. Extrinsic cut-off frequencies fT/f max of 100/125 GHz together with minimum noise figure NF(min) = 0.5 dB and associated gain G(ass) = 12 dB at 12 GHz have been obtained at drain bias of only 80 mV, corresponding to 4 mW/mm DC power dissipation. This demonstrates the great ability of AlSb/InAs HEMT for high-frequency operation combined with low-noise performances in ultra-low-power regime.


Assuntos
Fontes de Energia Elétrica/tendências , Elétrons , Transistores Eletrônicos/tendências
9.
ACS Appl Mater Interfaces ; 5(19): 9760-4, 2013 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-24024581

RESUMO

Determining the atomic structure of misfit dislocations at highly lattice mismatched interface is essential to optimize the quality of the epitaxial layer. Here, with aberration corrected scanning transmission electron microscopy at sub-Angstrom resolution and molecular dynamics simulation, we investigated the atomic structure of misfit dislocations at GaSb/GaAs interface. New types of Lomer misfit dislocation formed on an Sb wetting monolayer were observed, in contrast to a conventional misfit dislocation whose core is located at interface. These Sb-mediated dislocations have highly localized cores and offer more capability to confine the mismatch strain at the interface. The low strain atomic configuration of Sb-mediated dislocations is driven by minimization of the core energy. This unveiled mechanism may pave the way to the growth of high quality hetero-epitaxial layers.

10.
J Nanosci Nanotechnol ; 13(2): 771-5, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23646513

RESUMO

III-V Metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET) with a gate stack based on high-kappa dielectric appears as an appealing solution to increase the performance of either microwave or logic circuits with low supply voltage (V(DD)). The main objective of this work is to provide a theoretical model of the gate charge control in III-V MOS capacitors (MOSCAPs) using the accurate self-consistent solution of 1D and 2D Poisson-Schrödinger equations. This study allows us to identify the major mechanisms which must be included to get theoretical calculations in good agreement with experiments. Actually, our results obtained for an Al2O3/In0.53Ga0.47As MOSCAP structure are successfully compared to experimental measurements. We evaluate how III-V MOS technology is affected by the density of interface states which favors the Fermi level pinning at the Al2O3/In0.53Ga0.47As interface in both depletion and inversion regimes, which is a consequence of the poor gate control of the mobile inversion carrier density. The high energy valleys (satellite valleys) contribution observed in many theoretical calculations appears to be fully negligible in the presence of interface states. The enhancement of doping density in the channel is shown to improve the short-channel effect (SCE) immunity but to the price of higher sensitivity to the interface trap effect which manifests through a low Fermi level movement efficiency at interface in OFF-state and a low inversion carrier density in ON-state, even in the long channel case.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA