Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 129
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Comput Neurosci ; 18: 1432593, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39165754

RESUMO

The development of biologically realistic models of brain microcircuits and regions constitutes currently a very relevant topic in computational neuroscience. One of the main challenges of such models is the passage between different scales, going from the microscale (cellular) to the meso (microcircuit) and macroscale (region or whole-brain level), while keeping at the same time a constraint on the demand of computational resources. In this paper we introduce a multiscale modeling framework for the hippocampal CA1, a region of the brain that plays a key role in functions such as learning, memory consolidation and navigation. Our modeling framework goes from the single cell level to the macroscale and makes use of a novel mean-field model of CA1, introduced in this paper, to bridge the gap between the micro and macro scales. We test and validate the model by analyzing the response of the system to the main brain rhythms observed in the hippocampus and comparing our results with the ones of the corresponding spiking network model of CA1. Then, we analyze the implementation of synaptic plasticity within our framework, a key aspect to study the role of hippocampus in learning and memory consolidation, and we demonstrate the capability of our framework to incorporate the variations at synaptic level. Finally, we present an example of the implementation of our model to study a stimulus propagation at the macro-scale level, and we show that the results of our framework can capture the dynamics obtained in the corresponding spiking network model of the whole CA1 area.

2.
J Comput Neurosci ; 2024 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-39186186
3.
Front Behav Neurosci ; 18: 1399394, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39188591

RESUMO

Learning to make adaptive decisions involves making choices, assessing their consequence, and leveraging this assessment to attain higher rewarding states. Despite vast literature on value-based decision-making, relatively little is known about the cognitive processes underlying decisions in highly uncertain contexts. Real world decisions are rarely accompanied by immediate feedback, explicit rewards, or complete knowledge of the environment. Being able to make informed decisions in such contexts requires significant knowledge about the environment, which can only be gained via exploration. Here we aim at understanding and formalizing the brain mechanisms underlying these processes. To this end, we first designed and performed an experimental task. Human participants had to learn to maximize reward while making sequences of decisions with only basic knowledge of the environment, and in the absence of explicit performance cues. Participants had to rely on their own internal assessment of performance to reveal a covert relationship between their choices and their subsequent consequences to find a strategy leading to the highest cumulative reward. Our results show that the participants' reaction times were longer whenever the decision involved a future consequence, suggesting greater introspection whenever a delayed value had to be considered. The learning time varied significantly across participants. Second, we formalized the neurocognitive processes underlying decision-making within this task, combining mean-field representations of competing neural populations with a reinforcement learning mechanism. This model provided a plausible characterization of the brain dynamics underlying these processes, and reproduced each aspect of the participants' behavior, from their reaction times and choices to their learning rates. In summary, both the experimental results and the model provide a principled explanation to how delayed value may be computed and incorporated into the neural dynamics of decision-making, and to how learning occurs in these uncertain scenarios.

4.
Elife ; 122024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38976325

RESUMO

In patients suffering absence epilepsy, recurring seizures can significantly decrease their quality of life and lead to yet untreatable comorbidities. Absence seizures are characterized by spike-and-wave discharges on the electroencephalogram associated with a transient alteration of consciousness. However, it is still unknown how the brain responds to external stimuli during and outside of seizures. This study aimed to investigate responsiveness to visual and somatosensory stimulation in Genetic Absence Epilepsy Rats from Strasbourg (GAERS), a well-established rat model for absence epilepsy. Animals were imaged under non-curarized awake state using a quiet, zero echo time, functional magnetic resonance imaging (fMRI) sequence. Sensory stimulations were applied during interictal and ictal periods. Whole-brain hemodynamic responses were compared between these two states. Additionally, a mean-field simulation model was used to explain the changes of neural responsiveness to visual stimulation between states. During a seizure, whole-brain responses to both sensory stimulations were suppressed and spatially hindered. In the cortex, hemodynamic responses were negatively polarized during seizures, despite the application of a stimulus. The mean-field simulation revealed restricted propagation of activity due to stimulation and agreed well with fMRI findings. Results suggest that sensory processing is hindered or even suppressed by the occurrence of an absence seizure, potentially contributing to decreased responsiveness during this absence epileptic process.


Assuntos
Encéfalo , Eletroencefalografia , Epilepsia Tipo Ausência , Imageamento por Ressonância Magnética , Animais , Ratos , Epilepsia Tipo Ausência/fisiopatologia , Encéfalo/fisiopatologia , Encéfalo/diagnóstico por imagem , Masculino , Vigília/fisiologia , Modelos Animais de Doenças , Convulsões/fisiopatologia , Estimulação Luminosa
5.
Neural Comput ; 36(7): 1433-1448, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38776953

RESUMO

Mean-field models are a class of models used in computational neuroscience to study the behavior of large populations of neurons. These models are based on the idea of representing the activity of a large number of neurons as the average behavior of mean-field variables. This abstraction allows the study of large-scale neural dynamics in a computationally efficient and mathematically tractable manner. One of these methods, based on a semianalytical approach, has previously been applied to different types of single-neuron models, but never to models based on a quadratic form. In this work, we adapted this method to quadratic integrate-and-fire neuron models with adaptation and conductance-based synaptic interactions. We validated the mean-field model by comparing it to the spiking network model. This mean-field model should be useful to model large-scale activity based on quadratic neurons interacting with conductance-based synapses.


Assuntos
Potenciais de Ação , Modelos Neurológicos , Redes Neurais de Computação , Neurônios , Neurônios/fisiologia , Potenciais de Ação/fisiologia , Sinapses/fisiologia , Humanos , Animais , Simulação por Computador , Rede Nervosa/fisiologia
6.
iScience ; 27(5): 109692, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38689637

RESUMO

Sensory information must be integrated across a distributed brain network for stimulus processing and perception. Recent studies have revealed specific spatiotemporal patterns of cortical activation for the early and late components of sensory-evoked responses, which are associated with stimulus features and perception, respectively. Here, we investigated how the brain state influences the sensory-evoked activation across the mouse cortex. We utilized isoflurane to modulate the brain state and conducted wide-field calcium imaging of Thy1-GCaMP6f mice to monitor distributed activation evoked by multi-whisker stimulation. Our findings reveal that the level of anesthesia strongly shapes the spatiotemporal features and the functional connectivity of the sensory-activated network. As anesthesia levels decrease, we observe increasingly complex responses, accompanied by the emergence of the late component within the sensory-evoked response. The persistence of the late component under anesthesia raises new questions regarding the potential existence of perception during unconscious states.

8.
Nat Commun ; 15(1): 2171, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38462641

RESUMO

A central challenge of neuroscience is to elucidate how brain function supports consciousness. Here, we combine the specificity of focal deep brain stimulation with fMRI coverage of the entire cortex, in awake and anaesthetised non-human primates. During propofol, sevoflurane, or ketamine anaesthesia, and subsequent restoration of responsiveness by electrical stimulation of the central thalamus, we investigate how loss of consciousness impacts distributed patterns of structure-function organisation across scales. We report that distributed brain activity under anaesthesia is increasingly constrained by brain structure across scales, coinciding with anaesthetic-induced collapse of multiple dimensions of hierarchical cortical organisation. These distributed signatures are observed across different anaesthetics, and they are reversed by electrical stimulation of the central thalamus, coinciding with recovery of behavioural markers of arousal. No such effects were observed upon stimulating the ventral lateral thalamus, demonstrating specificity. Overall, we identify consistent distributed signatures of consciousness that are orchestrated by specific thalamic nuclei.


Assuntos
Anestésicos , Propofol , Animais , Estado de Consciência/fisiologia , Encéfalo/diagnóstico por imagem , Propofol/farmacologia , Córtex Cerebral , Primatas , Tálamo/diagnóstico por imagem , Anestésicos/farmacologia
9.
J Comput Neurosci ; 52(2): 165-181, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38512693

RESUMO

Gamma oscillations are widely seen in the cerebral cortex in different states of the wake-sleep cycle and are thought to play a role in sensory processing and cognition. Here, we study the emergence of gamma oscillations at two levels, in networks of spiking neurons, and a mean-field model. At the network level, we consider two different mechanisms to generate gamma oscillations and show that they are best seen if one takes into account the synaptic delay between neurons. At the mean-field level, we show that, by introducing delays, the mean-field can also produce gamma oscillations. The mean-field matches the mean activity of excitatory and inhibitory populations of the spiking network, as well as their oscillation frequencies, for both mechanisms. This mean-field model of gamma oscillations should be a useful tool to investigate large-scale interactions through gamma oscillations in the brain.


Assuntos
Potenciais de Ação , Ritmo Gama , Modelos Neurológicos , Rede Nervosa , Inibição Neural , Neurônios , Neurônios/fisiologia , Ritmo Gama/fisiologia , Rede Nervosa/fisiologia , Inibição Neural/fisiologia , Animais , Potenciais de Ação/fisiologia , Humanos , Redes Neurais de Computação
10.
Neuroinformatics ; 22(1): 75-87, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37981636

RESUMO

To simulate whole brain dynamics with only a few equations, biophysical, mesoscopic models of local neuron populations can be connected using empirical tractography data. The development of mesoscopic mean-field models of neural populations, in particular, the Adaptive Exponential (AdEx mean-field model), has successfully summarized neuron-scale phenomena leading to the emergence of global brain dynamics associated with conscious (asynchronous and rapid dynamics) and unconscious (synchronized slow-waves, with Up-and-Down state dynamics) brain states, based on biophysical mechanisms operating at cellular scales (e.g. neuromodulatory regulation of spike-frequency adaptation during sleep-wake cycles or anesthetics). Using the Virtual Brain (TVB) environment to connect mean-field AdEx models, we have previously simulated the general properties of brain states, playing on spike-frequency adaptation, but have not yet performed detailed analyses of other parameters possibly also regulating transitions in brain-scale dynamics between different brain states. We performed a dense grid parameter exploration of the TVB-AdEx model, making use of High Performance Computing. We report a remarkable robustness of the effect of adaptation to induce synchronized slow-wave activity. Moreover, the occurrence of slow waves is often paralleled with a closer relation between functional and structural connectivity. We find that hyperpolarization can also generate unconscious-like synchronized Up and Down states, which may be a mechanism underlying the action of anesthetics. We conclude that the TVB-AdEx model reveals large-scale properties identified experimentally in sleep and anesthesia.


Assuntos
Anestésicos , Encéfalo , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Neurônios/fisiologia , Cabeça , Metodologias Computacionais , Modelos Neurológicos
11.
eNeuro ; 10(11)2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37940562

RESUMO

Psychotic drugs such as ketamine induce symptoms close to schizophrenia and stimulate the production of γ oscillations, as also seen in patients, but the underlying mechanisms are still unclear. Here, we have used computational models of cortical networks generating γ oscillations, and have integrated the action of drugs such as ketamine to partially block NMDA receptors (NMDARs). The model can reproduce the paradoxical increase of γ oscillations by NMDA receptor antagonists, assuming that antagonists affect NMDA receptors with higher affinity on inhibitory interneurons. We next used the model to compare the responsiveness of the network to external stimuli, and found that when NMDA channels are blocked, an increase of γ power is observed altogether with an increase of network responsiveness. However, this responsiveness increase applies not only to γ states, but also to asynchronous states with no apparent γ. We conclude that NMDA antagonists induce an increased excitability state, which may or may not produce γ oscillations, but the response to external inputs is exacerbated, which may explain phenomena such as altered perception or hallucinations.


Assuntos
Ketamina , Receptores de N-Metil-D-Aspartato , Humanos , Receptores de N-Metil-D-Aspartato/metabolismo , Ketamina/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , N-Metilaspartato , Córtex Cerebral/metabolismo
12.
PLoS Comput Biol ; 19(9): e1011434, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37656758

RESUMO

Mean-field (MF) models are computational formalism used to summarize in a few statistical parameters the salient biophysical properties of an inter-wired neuronal network. Their formalism normally incorporates different types of neurons and synapses along with their topological organization. MFs are crucial to efficiently implement the computational modules of large-scale models of brain function, maintaining the specificity of local cortical microcircuits. While MFs have been generated for the isocortex, they are still missing for other parts of the brain. Here we have designed and simulated a multi-layer MF of the cerebellar microcircuit (including Granule Cells, Golgi Cells, Molecular Layer Interneurons, and Purkinje Cells) and validated it against experimental data and the corresponding spiking neural network (SNN) microcircuit model. The cerebellar MF was built using a system of equations, where properties of neuronal populations and topological parameters are embedded in inter-dependent transfer functions. The model time constant was optimised using local field potentials recorded experimentally from acute mouse cerebellar slices as a template. The MF reproduced the average dynamics of different neuronal populations in response to various input patterns and predicted the modulation of the Purkinje Cells firing depending on cortical plasticity, which drives learning in associative tasks, and the level of feedforward inhibition. The cerebellar MF provides a computationally efficient tool for future investigations of the causal relationship between microscopic neuronal properties and ensemble brain activity in virtual brain models addressing both physiological and pathological conditions.


Assuntos
Cerebelo , Neocórtex , Animais , Camundongos , Células de Purkinje , Neurônios , Biofísica
13.
Sci Rep ; 13(1): 6451, 2023 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-37081004

RESUMO

Functional magnetic resonance imaging relies on the coupling between neuronal and vascular activity, but the mechanisms behind this coupling are still under discussion. Recent experimental evidence suggests that calcium signaling may play a significant role in neurovascular coupling. However, it is still controversial where this calcium signal is located (in neurons or elsewhere), how it operates and how relevant is its role. In this paper we introduce a biologically plausible model of the neurovascular coupling and we show that calcium signaling in astrocytes can explain main aspects of the dynamics of the coupling. We find that calcium signaling can explain so-far unrelated features such as the linear and non-linear regimes, the negative vascular response (undershoot) and the emergence of a (calcium-driven) Hemodynamic Response Function. These features are reproduced here for the first time by a single model of the detailed neuronal-astrocyte-vascular pathway. Furthermore, we analyze how information is coded and transmitted from the neuronal to the vascular system and we predict that frequency modulation of astrocytic calcium dynamics plays a key role in this process. Finally, our work provides a framework to link neuronal activity to the BOLD signal, and vice-versa, where neuronal activity can be inferred from the BOLD signal. This opens new ways to link known alterations of astrocytic calcium signaling in neurodegenerative diseases (e.g. Alzheimer's and Parkinson's diseases) with detectable changes in the neurovascular coupling.


Assuntos
Cálcio , Acoplamento Neurovascular , Cálcio/metabolismo , Astrócitos/metabolismo , Acoplamento Neurovascular/fisiologia , Neurônios/metabolismo , Hemodinâmica , Imageamento por Ressonância Magnética/métodos , Cálcio da Dieta/metabolismo , Circulação Cerebrovascular/fisiologia , Encéfalo/fisiologia
14.
Sci Rep ; 13(1): 3183, 2023 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-36823228

RESUMO

Brain states, such as wake, sleep, or different depths of anesthesia are usually assessed using electrophysiological techniques, such as the local field potential (LFP) or the electroencephalogram (EEG), which are ideal signals for detecting activity patterns such as asynchronous or oscillatory activities. However, it is technically challenging to have these types of measures during calcium imaging recordings such as two-photon or wide-field techniques. Here, using simultaneous two-photon and LFP measurements, we demonstrate that despite the slower dynamics of the calcium signal, there is a high correlation between the LFP and two-photon signals taken from the neuropil outside neuronal somata. Moreover, we find the calcium signal to be systematically delayed from the LFP signal, and we use a model to show that the delay between the two signals is due to the physical distance between the recording sites. These results suggest that calcium signals alone can be used to detect activity patterns such as slow oscillations and ultimately assess the brain state and level of anesthesia.


Assuntos
Anestesia , Cálcio , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Eletroencefalografia , Sono/fisiologia , Cálcio da Dieta
15.
Entropy (Basel) ; 24(12)2022 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-36554242

RESUMO

Cortical neurons in vivo function in highly fluctuating and seemingly noisy conditions, and the understanding of how information is processed in such complex states is still incomplete. In this perspective article, we first overview that an intense "synaptic noise" was measured first in single neurons, and computational models were built based on such measurements. Recent progress in recording techniques has enabled the measurement of highly complex activity in large numbers of neurons in animals and human subjects, and models were also built to account for these complex dynamics. Here, we attempt to link these two cellular and population aspects, where the complexity of network dynamics in awake cortex seems to link to the synaptic noise seen in single cells. We show that noise in single cells, in networks, or structural noise, all participate to enhance responsiveness and boost the propagation of information. We propose that such noisy states are fundamental to providing favorable conditions for information processing at large-scale levels in the brain, and may be involved in sensory perception.

16.
eNeuro ; 9(6)2022.
Artigo em Inglês | MEDLINE | ID: mdl-36323513

RESUMO

Epilepsies are characterized by paroxysmal electrophysiological events and seizures, which can propagate across the brain. One of the main unsolved questions in epilepsy is how epileptic activity can invade normal tissue and thus propagate across the brain. To investigate this question, we consider three computational models at the neural network scale to study the underlying dynamics of seizure propagation, understand which specific features play a role, and relate them to clinical or experimental observations. We consider both the internal connectivity structure between neurons and the input properties in our characterization. We show that a paroxysmal input is sometimes controlled by the network while in other instances, it can lead the network activity to itself produce paroxysmal activity, and thus will further propagate to efferent networks. We further show how the details of the network architecture are essential to determine this switch to a seizure-like regime. We investigated the nature of the instability involved and in particular found a central role for the inhibitory connectivity. We propose a probabilistic approach to the propagative/non-propagative scenarios, which may serve as a guide to control the seizure by using appropriate stimuli.


Assuntos
Encéfalo , Epilepsia , Humanos , Encéfalo/fisiologia , Convulsões , Neurônios/fisiologia , Fenômenos Eletrofisiológicos , Eletroencefalografia
18.
Front Comput Neurosci ; 16: 968278, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36313811

RESUMO

The use of mean-field models to describe the activity of large neuronal populations has become a very powerful tool for large-scale or whole brain simulations. However, the calculation of brain signals from mean-field models, such as the electric and magnetic fields, is still under development. Thus, the emergence of new methods for an accurate and efficient calculation of such brain signals is currently of great relevance. In this paper we propose a novel method to calculate the local field potentials (LFP) and magnetic fields from mean-field models. The calculation of LFP is done via a kernel method based on unitary LFP's (the LFP generated by a single axon) that was recently introduced for spiking-networks simulations and that we adapt here for mean-field models. The calculation of the magnetic field is based on current-dipole and volume-conductor models, where the secondary currents (due to the conducting extracellular medium) are estimated using the LFP calculated via the kernel method and the effects of medium-inhomogeneities are incorporated. We provide an example of the application of our method for the calculation of LFP and MEG under slow-waves of neuronal activity generated by a mean-field model of a network of Adaptive-Exponential Integrate-and-Fire (AdEx) neurons. We validate our method via comparison with results obtained from the corresponding spiking neuronal networks. Finally we provide an example of our method for whole brain simulations performed with The Virtual Brain (TVB), a recently developed tool for large scale simulations of the brain. Our method provides an efficient way of calculating electric and magnetic fields from mean-field models. This method exhibits a great potential for its application in large-scale or whole-brain simulations, where calculations via detailed biological models are not feasible.

19.
Nat Neurosci ; 25(10): 1327-1338, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36171431

RESUMO

Neural activity in the sensory cortex combines stimulus responses and ongoing activity, but it remains unclear whether these reflect the same underlying dynamics or separate processes. In the present study, we show in mice that, during wakefulness, the neuronal assemblies evoked by sounds in the auditory cortex and thalamus are specific to the stimulus and distinct from the assemblies observed in ongoing activity. By contrast, under three different anesthetics, evoked assemblies are indistinguishable from ongoing assemblies in the cortex. However, they remain distinct in the thalamus. A strong remapping of sensory responses accompanies this dynamic state change produced by anesthesia. Together, these results show that the awake cortex engages dedicated neuronal assemblies in response to sensory inputs, which we suggest is a network correlate of sensory perception.


Assuntos
Anestésicos , Córtex Auditivo , Estimulação Acústica , Animais , Córtex Auditivo/fisiologia , Percepção Auditiva/fisiologia , Camundongos , Neurônios/fisiologia , Percepção , Vigília/fisiologia
20.
J Acoust Soc Am ; 151(6): 3685, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35778195

RESUMO

We present a method to convert neural signals into sound sequences, with the constraint that the sound sequences precisely reflect the sequences of events in the neural signal. The method consists in quantifying the wave motifs in the signal and using these parameters to generate sound envelopes. We illustrate the procedure for sleep delta waves in the human electro-encephalogram (EEG), which are converted into sound sequences that encode the time structure of the original EEG waves. This procedure can be applied to synthesize personalized sound sequences specific to the EEG of a given subject.


Assuntos
Eletroencefalografia , Processamento de Sinais Assistido por Computador , Eletroencefalografia/métodos , Humanos , Sono , Som
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA