Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
eNeuro ; 7(6)2020.
Artigo em Inglês | MEDLINE | ID: mdl-33004417

RESUMO

Larval zebrafish possess a number of molecular and genetic advantages for rigorous biological analyses of learning and memory. These advantages have motivated the search for novel forms of memory in these animals that can be exploited for understanding the cellular and molecular bases of vertebrate memory formation and consolidation. Here, we report a new form of behavioral sensitization in zebrafish larvae that is elicited by an aversive chemical stimulus [allyl isothiocyanate (AITC)] and that persists for ≥30 min. This form of sensitization is expressed as enhanced locomotion and thigmotaxis, as well as elevated heart rate. To characterize the neural basis of this nonassociative memory, we used transgenic zebrafish expressing the fluorescent calcium indicator GCaMP6 (Chen et al., 2013); because of the transparency of larval zebrafish, we could optically monitor neural activity in the brain of intact transgenic zebrafish before and after the induction of sensitization. We found a distinct brain area, previously linked to locomotion, that exhibited persistently enhanced neural activity following washout of AITC; this enhanced neural activity correlated with the behavioral sensitization. These results establish a novel form of memory in larval zebrafish and begin to unravel the neural basis of this memory.


Assuntos
Memória , Peixe-Zebra , Animais , Animais Geneticamente Modificados , Larva , Locomoção
2.
PLoS One ; 14(4): e0214374, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30946762

RESUMO

Zebrafish larvae have several biological features that make them useful for cellular investigations of the mechanisms underlying learning and memory. Of particular interest in this regard is a rapid escape, or startle, reflex possessed by zebrafish larvae; this reflex, the C-start, is mediated by a relatively simple neuronal circuit and exhibits habituation, a non-associative form of learning. Here we demonstrate a rapid form of habituation of the C-start to touch that resembles the previously reported rapid habituation induced by auditory or vibrational stimuli. We also show that touch-induced habituation exhibits input specificity. This work sets the stage for in vivo optical investigations of the cellular sites of plasticity that mediate habituation of the C-start in the larval zebrafish.


Assuntos
Reação de Fuga/fisiologia , Habituação Psicofisiológica , Tato/fisiologia , Peixe-Zebra/fisiologia , Animais , Eletrochoque , Reação de Fuga/efeitos dos fármacos , Glicina/farmacologia , Habituação Psicofisiológica/efeitos dos fármacos , Cabeça , Larva/efeitos dos fármacos , Larva/fisiologia , Reflexo de Sobressalto/efeitos dos fármacos , Reflexo de Sobressalto/fisiologia , Estricnina/farmacologia
3.
Invest Ophthalmol Vis Sci ; 54(2): 1280-7, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23322580

RESUMO

PURPOSE: To determine the effect of triamcinolone acetonide (TA) on outflow facility in mice. METHODS: Animals received 20 µL of TA (40 mg/mL) suspension subconjunctivally either bilaterally or unilaterally and were euthanized after either 1 week or 3 weeks. Before mice were killed, IOP was measured with a rebound tonometer. Outflow facility was determined using simultaneous pressure and flow measurements. Another set of animals received bilateral injection of anecortave acetate (AA) with or without bilateral TA injection and their outflow facility was also determined. Myocilin expression was investigated in a subset of eyes using quantitative PCR (qPCR). RESULTS: Outflow facility of eyes in animals receiving bilateral TA injection (TA(BL)) and TA-treated eyes of animals receiving unilateral injection (TA(UL)) was significantly decreased compared to naïve control eyes (C(naive)) after 1 week and 3 weeks of TA treatment (ANOVA P < 0.01, P < 0.001, respectively). Eyes treated with AA (with or without TA) had higher outflow facility than animals treated with TA (P < 0.05). IOP data did not show any significant difference between groups. qPCR analysis revealed significant decrease in myocilin expression in eyes receiving AA compared to naïve control and TA-treated eyes (ANOVA P < 0.001). CONCLUSIONS: Steroid treatment significantly decreases outflow facility in C57BL/6 mice despite having small effect on IOP. This animal model can be useful for studying the pathogenesis of steroid-induced glaucoma.


Assuntos
Modelos Animais de Doenças , Glaucoma/induzido quimicamente , Glaucoma/metabolismo , Glucocorticoides/toxicidade , Camundongos Endogâmicos C57BL , Triancinolona Acetonida/toxicidade , Animais , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Proteínas do Olho/genética , Proteínas do Olho/metabolismo , Feminino , Glicoproteínas/genética , Glicoproteínas/metabolismo , Hidrocortisona/análogos & derivados , Hidrocortisona/toxicidade , Pressão Intraocular/efeitos dos fármacos , Pressão Intraocular/fisiologia , Camundongos , Microdiálise/métodos , Modelos Biológicos , RNA Mensageiro/metabolismo , Malha Trabecular/efeitos dos fármacos , Malha Trabecular/metabolismo
4.
Mol Biol Cell ; 23(15): 2917-29, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22648171

RESUMO

Voltage-gated K(+) (Kv) channels regulate membrane potential in many cell types. Although the channel surface density and location must be well controlled, little is known about Kv channel delivery and retrieval on the cell surface. The Kv2.1 channel localizes to micron-sized clusters in neurons and transfected human embryonic kidney (HEK) cells, where it is nonconducting. Because Kv2.1 is postulated to be involved in soluble N-ethylmaleimide-sensitive factor attachment protein receptor-mediated membrane fusion, we examined the hypothesis that these surface clusters are specialized platforms involved in membrane protein trafficking. Total internal reflection-based fluorescence recovery after photobleaching studies and quantum dot imaging of single Kv2.1 channels revealed that Kv2.1-containing vesicles deliver cargo at the Kv2.1 surface clusters in both transfected HEK cells and hippocampal neurons. More than 85% of cytoplasmic and recycling Kv2.1 channels was delivered to the cell surface at the cluster perimeter in both cell types. At least 85% of recycling Kv1.4, which, unlike Kv2.1, has a homogeneous surface distribution, is also delivered here. Actin depolymerization resulted in Kv2.1 exocytosis at cluster-free surface membrane. These results indicate that one nonconducting function of Kv2.1 is to form microdomains involved in membrane protein trafficking. This study is the first to identify stable cell surface platforms involved in ion channel trafficking.


Assuntos
Canal de Potássio Kv1.4/metabolismo , Neurônios/metabolismo , Proteínas SNARE/metabolismo , Canais de Potássio Shab/metabolismo , Membrana Celular/metabolismo , Células HEK293 , Humanos , Ativação do Canal Iônico , Fusão de Membrana/fisiologia , Potenciais da Membrana , Microscopia Confocal , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA