Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Med Chem Lett ; 3(5): 378-382, 2012 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-23066448

RESUMO

The development of photoaffinity ligands for determining covalent points of attachment to the dopamine transporter (DAT) has predominantly focused on tropane-based compounds bearing variable-length linkers between the photoreactive group and inhibitor pharmacophore. In order to expand the array of photoprobes useful for mapping inhibitor-binding pockets within the DAT, a compact non-tropane ligand was synthesized featuring a photoreactive azide and iodine tag directly attached to the aromatic ring of (±)-threo-methylphenidate. (±)-threo-4-Azido-3-iodomethylphenidate ((±)-6); K(i) = 4.0 ± 0.8 nM) displayed high affinity for hDAT. Moreover, a radioiodinated analog of (±)-6 demonstrated covalent ligation to the DAT in cultured cells and rat striatal membranes, thus suggesting the potential utility of this photoprobe in DAT structure-function studies.

2.
Bioorg Med Chem ; 19(1): 504-12, 2011 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-21129986

RESUMO

In contrast to tropane-based compounds such as benztropine and cocaine, non-tropane-based photoaffinity ligands for the dopamine transporter (DAT) are relatively unexplored. Towards addressing this knowledge gap, ligands were synthesized in which the piperidine nitrogen of 3- and 4-iodomethylphenidate was substituted with a benzyl group bearing a photoreactive azide. Analog (±)-3a demonstrated modest DAT affinity and a radioiodinated version was shown to bind covalently to rat striatal DAT and hDAT expressed in cultured cells. Co-incubation of (±)-3a with nonradioactive d-(+)-methylphenidate or (-)-2-ß-carbomethoxy-3-ß-(4-fluorophenyl)tropane (ß-CFT, WIN-35,428, a cocaine analog) blocked DAT labeling. Compound (±)-3a represents the first successful example of a DAT photoaffinity ligand based on the methylphenidate scaffold. Such ligands are expected to assist in mapping non-tropane ligand-binding pockets within plasma membrane monoamine transporters.


Assuntos
Proteínas da Membrana Plasmática de Transporte de Dopamina/química , Metilfenidato/análogos & derivados , Cromatografia Líquida de Alta Pressão , Desenho de Fármacos , Ligantes , Espectroscopia de Ressonância Magnética , Metilfenidato/síntese química , Metilfenidato/farmacologia , Marcadores de Fotoafinidade , Relação Estrutura-Atividade
3.
Bioorg Med Chem ; 18(20): 7221-38, 2010 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-20846865

RESUMO

Complementary two-dimensional (2D) and three-dimensional (3D) Quantitative Structure-Activity Relationship (QSAR) techniques were used to derive a preliminary model for the dopamine transporter (DAT) binding affinity of 80 racemic threo-methylphenidate (MP) analogs. A novel approach based on using the atom-level E-state indices of the 14 common scaffold atoms in a sphere exclusion protocol was used to identify a test set for 2D- and 3D-QSAR model validation. Comparative Molecular Field Analysis (CoMFA) contour maps based on the structure-activity data of the training set indicate that the 2' position of the phenyl ring cannot tolerate much steric bulk and that addition of electron-withdrawing groups to the 3' or 4' positions of the phenyl ring leads to improved DAT binding affinity. In particular, the optimal substituents were found to be those whose bulk is mainly in the plane of the phenyl ring. Substituents with significant bulk above or below the plane of the ring led to decreased binding affinity. Suggested alterations to be explored in the design of new compounds are the placement at the 3' and 4' position of the phenyl ring of electron-withdrawing groups that lie chiefly in the plane of the ring, for example, halogen substituents on the 3',4'-benzo analog, 79. A complementary 2D-QSAR approach-partial least squares analysis using a reduced set of Molconn-Z descriptors-supports the CoMFA structure-activity interpretation that phenyl ring substitution is a major determinant of DAT binding affinity. The potential usefulness of the CoMFA models was demonstrated by the prediction of the binding affinity of methyl 2-(naphthalen-1-yl)-2-(piperidin-2-yl)acetate, an analog not in the original data set, to be in good agreement with the experimental value.


Assuntos
Metilfenidato/química , Proteínas da Membrana Plasmática de Transporte de Dopamina/química , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Isomerismo , Metilfenidato/síntese química , Metilfenidato/farmacologia , Modelos Moleculares , Ligação Proteica , Relação Quantitativa Estrutura-Atividade
4.
J Med Chem ; 50(11): 2718-31, 2007 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-17489581

RESUMO

A series of threo-1-aza-3 or 4-substituted-5-phenyl[4.4.0]decanes (quinolizidines), which were envisioned as restricted rotational analogues (RRAs) of methylphenidate (MP), was synthesized and tested for inhibitory potency against [(3)H]WIN35,428, [3H]citalopram, and [3H]nisoxetine binding to the dopamine, serotonin, and norepinephrine transporters, respectively. Two different synthetic schemes were used; a Wittig reaction or acylation (followed by an intramolecular condensation) was a key feature of each scheme. The unsubstituted RRA, threo(trans)-1-aza-5-phenyl[4.4.0]decane (12a), was equipotent to unconstrained threo-MP against [(3)H]WIN35,428 binding. The extra ring in these RRAs (which reduces the conformational freedom) and the orientation and polarity of substituents at the 4-position on this extra ring are of critical importance to the biological activity. Generally, the RRAs paralleled the corresponding unconstrained MP derivatives in binding affinity to the three transporters. The results suggest that the conformation of MP in which the carbonyl group of the methyl ester is H-bonded to the piperidinyl N-H may be the bioactive form of the molecule.


Assuntos
Encéfalo/metabolismo , Compostos Bicíclicos Heterocíclicos com Pontes/síntese química , Transtornos Relacionados ao Uso de Cocaína/tratamento farmacológico , Metilfenidato/análogos & derivados , Metilfenidato/síntese química , Quinolizinas/síntese química , Animais , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Citalopram/farmacologia , Cocaína/análogos & derivados , Cocaína/farmacologia , Dopamina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Fluoxetina/análogos & derivados , Fluoxetina/farmacologia , Técnicas In Vitro , Masculino , Metilfenidato/farmacologia , Quinolizinas/farmacologia , Ensaio Radioligante , Ratos , Ratos Sprague-Dawley , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Estereoisomerismo , Relação Estrutura-Atividade
5.
J Comput Aided Mol Des ; 18(11): 719-38, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15865064

RESUMO

Methylphenidate (MP) binds to the cocaine binding site on the dopamine transporter and inhibits reuptake of dopamine, but does not appear to have the same abuse potential as cocaine. This study, part of a comprehensive effort to identify a drug treatment for cocaine abuse, investigates the effect of choice of calculation technique and of solvent model on the conformational potential energy surface (PES) of MP and a rigid methylphenidate (RMP) analogue which exhibits the same dopamine transporter binding affinity as MP. Conformational analysis was carried out by the AM1 and AM1/SM5.4 semiempirical molecular orbital methods, a molecular mechanics method (Tripos force field with the dielectric set equal to that of vacuum or water) and the HF/6-31G* molecular orbital method in vacuum phase. Although all three methods differ somewhat in the local details of the PES, the general trends are the same for neutral and protonated MP. In vacuum phase, protonation has a distinctive effect in decreasing the regions of space available to the local conformational minima. Solvent has little effect on the PES of the neutral molecule and tends to stabilize the protonated species. The random search (RS) conformational analysis technique using the Tripos force field was found to be capable of locating the minima found by the molecular orbital methods using systematic grid search. This suggests that the RS/Tripos force field/vacuum phase protocol is a reasonable choice for locating the local minima of MP. However, the Tripos force field gave significantly larger phenyl ring rotational barriers than the molecular orbital methods for MP and RMP. For both the neutral and protonated cases, all three methods found the phenyl ring rotational barriers for the RMP conformers/invertamers (denoted as cte, tte, and cta) to be: cte, tte > MP > cta. Solvation has negligible effect on the phenyl ring rotational barrier of RMP. The B3LYP/6-31G* density functional method was used to calculate the phenyl ring rotational barrier for neutral MP and gave results very similar to those of the HF/6-31G* method.


Assuntos
Metilfenidato/química , Modelos Moleculares , Derivados de Benzeno/química , Inibidores da Captação de Dopamina/química , Metilfenidato/análogos & derivados , Conformação Molecular , Estrutura Molecular , Prótons , Rotação , Solventes/química , Temperatura , Termodinâmica
6.
J Med Chem ; 46(8): 1456-64, 2003 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-12672245

RESUMO

A series of 8-substituted-3-azabicyclo[3.2.1]octanes (isotropanes) were synthesized and tested for inhibitor potency using [(3)H]WIN 35,428 binding at the dopamine (DA) transporter, [(3)H]citalopram binding at the serotonin (5-HT) transporter, and [(3)H]DA uptake assays. The synthesis started with a Mannich condensation of cyclopentanone, benzylamine, and fomaldehyde to afford N-benzyl-3-azabicyclo[3.2.1]octan-8-one (6). The 8-phenyl group was introduced by Grignard addition to ketone 6 or nucleophilic displacement via a triflate of the corresponding alcohol 7a. The 8beta-phenyl-8alpha-alcohols from Grignard addition generally have low affinity for the two transporters and do not effectively inhibit the uptake of [(3)H]DA. The 8beta-phenyl compound (14) without the hydroxyl group at C-8 was much more potent (22-fold) for [(3)H]WIN 35,428 binding inhibition than the corresponding 8beta-phenyl-8alpha-hydroxy compound (7a). The 8alpha-phenyl compound 8a was almost as potent as cocaine in binding to the DA transporter (IC(50) = 234 nM vs 159 nM for cocaine), whereas the C-8 epimer, compound 14, was somewhat less potent (IC(50) = 785 nM). The lower potency of 14 (beta-orientation of 8-phenyl group) as compared to 8a (alpha-orientation) was unexpected, based on modeling studies comparing the new compounds to WIN 35,065-2, an analogue of cocaine. The benzhydryl ethers at C-8 (17), analogous to the benztropines, had better selectivity than the corresponding phenyl compounds, 8a and 14, for the DA transporter as compared to the 5-HT transporter. The isotropane and benzisotropine analogues seem to bind in a manner that is more similar to that of the benztropine compounds 5 rather than those of cocaine and WIN 35,065-2.


Assuntos
Compostos Bicíclicos com Pontes/síntese química , Inibidores da Captação de Dopamina/síntese química , Proteínas do Tecido Nervoso , Octanos/síntese química , Animais , Compostos Bicíclicos com Pontes/química , Compostos Bicíclicos com Pontes/farmacologia , Proteínas de Transporte/metabolismo , Córtex Cerebral/metabolismo , Córtex Cerebral/ultraestrutura , Transtornos Relacionados ao Uso de Cocaína/tratamento farmacológico , Corpo Estriado/metabolismo , Cristalografia por Raios X , Dopamina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Dopamina , Inibidores da Captação de Dopamina/química , Inibidores da Captação de Dopamina/farmacologia , Técnicas In Vitro , Glicoproteínas de Membrana/metabolismo , Moduladores de Transporte de Membrana , Proteínas de Membrana Transportadoras/antagonistas & inibidores , Membranas , Octanos/química , Octanos/farmacologia , Ligação Proteica , Ensaio Radioligante , Ratos , Serotonina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Serotonina , Relação Estrutura-Atividade , Sinaptossomos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA