Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 1458, 2024 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-38228729

RESUMO

Novel perioperative strategies are needed to reduce recurrence rates in patients undergoing nephrectomy for high-risk, non-metastatic clear cell renal cell carcinoma (ccRCC). We conducted a prospective, phase I trial of neoadjuvant nivolumab prior to nephrectomy in 15 evaluable patients with non-metastatic ccRCC. We leveraged tissue from that cohort to elucidate the effects of PD-1 inhibition on immune cell populations in ccRCC and correlate the evolving immune milieu with anti-PD-1 response. We found that nivolumab durably induces a pro-inflammatory state within the primary tumor, and baseline immune infiltration within the primary tumor correlates with nivolumab responsiveness. Nivolumab increases CTLA-4 expression in the primary tumor, and subsequent nephrectomy increases circulating concentrations of sPD-L1, sPD-L3 (sB7-H3), and s4-1BB. These findings form the basis to consider neoadjuvant immune checkpoint inhibition (ICI) for high-risk ccRCC while the tumor remains in situ and provide the rationale for perioperative strategies of novel ICI combinations.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Nivolumabe/farmacologia , Carcinoma de Células Renais/tratamento farmacológico , Terapia Neoadjuvante , Estudos Prospectivos
2.
Lab Invest ; 103(8): 100175, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37196983

RESUMO

Multiplex immunohistochemistry/immunofluorescence (mIHC/mIF) is a developing technology that facilitates the evaluation of multiple, simultaneous protein expressions at single-cell resolution while preserving tissue architecture. These approaches have shown great potential for biomarker discovery, yet many challenges remain. Importantly, streamlined cross-registration of multiplex immunofluorescence images with additional imaging modalities and immunohistochemistry (IHC) can help increase the plex and/or improve the quality of the data generated by potentiating downstream processes such as cell segmentation. To address this problem, a fully automated process was designed to perform a hierarchical, parallelizable, and deformable registration of multiplexed digital whole-slide images (WSIs). We generalized the calculation of mutual information as a registration criterion to an arbitrary number of dimensions, making it well suited for multiplexed imaging. We also used the self-information of a given IF channel as a criterion to select the optimal channels to use for registration. Additionally, as precise labeling of cellular membranes in situ is essential for robust cell segmentation, a pan-membrane immunohistochemical staining method was developed for incorporation into mIF panels or for use as an IHC followed by cross-registration. In this study, we demonstrate this process by registering whole-slide 6-plex/7-color mIF images with whole-slide brightfield mIHC images, including a CD3 and a pan-membrane stain. Our algorithm, WSI, mutual information registration (WSIMIR), performed highly accurate registration allowing the retrospective generation of an 8-plex/9-color, WSI, and outperformed 2 alternative automated methods for cross-registration by Jaccard index and Dice similarity coefficient (WSIMIR vs automated WARPY, P < .01 and P < .01, respectively, vs HALO + transformix, P = .083 and P = .049, respectively). Furthermore, the addition of a pan-membrane IHC stain cross-registered to an mIF panel facilitated improved automated cell segmentation across mIF WSIs, as measured by significantly increased correct detections, Jaccard index (0.78 vs 0.65), and Dice similarity coefficient (0.88 vs 0.79).


Assuntos
Corantes , Diagnóstico por Imagem , Imuno-Histoquímica , Estudos Retrospectivos , Imunofluorescência , Membrana Celular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA