Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Dairy Sci ; 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-39004134

RESUMO

Beta-lactoglobulin (ß-LG) is considered to be the major allergenic protein in milk. Lactic acid bacteria (LAB) possess a protein hydrolysis system that holds great promise for hydrolyzing ß-LG and reducing its allergenicity. Therefore, this study aimed to screen LAB with ß-LG hydrolysis activity from Yunnan traditional fermented foods. The results showed that Pediococcus pentosaceus C1001, Pediococcus acidilactici E1601-1, and Lactobacillus paracasei E1601-2, could effectively hydrolyze ß-LG and further reduce its sensitization (more than 40%). All 3 lactic acid bacteria hydrolyzed ß-LG allergenic fragments V41-K60 and L149-I162. Moreover, they encode a variety of genes related to proteolysis, such as aminopeptidase pepC and pepN, proline peptidase pepIP and endopeptidase pepO, and L. paracasei E1601-2 contains extracellular protease coding gene prtP. And they encode a variety of genes associated with hydrolyzed proteins. The 3 strains screened in this study can be used to develop hypoallergenic dairy products.

2.
ACS Omega ; 9(21): 22635-22649, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38826516

RESUMO

The widespread use of malathion enhances agricultural plant productivity by eliminating pests, weeds, and diseases, but it may lead to serious environmental pollution and potential health risks for humans and animals. To mitigate these issues, environmentally friendly hydrogel adsorbents for malathion were synthesized using biodegradable polymers, specifically cellulose, ß-cyclodextrin (ß-CD), poly(vinyl alcohol) (PVA), and biobased epichlorohydrin as a cross-linker. This study investigated the effects of the cellulose-to-PVA ratio and epichlorohydrin (ECH) content on the properties and malathion adsorption capabilities of ß-CD/cellulose/PVA hydrogels. It was found that the gel content of the hydrogels increased with a higher cellulose-to PVA and ECH ratio, whereas the swelling ratio decreased, indicating a denser structure that impedes water permeation. In addition, various parameters affecting the malathion adsorption capacity of the hydrogel, namely, contact time, pH, hydrogel dosage, initial concentration of malathion, and temperature, were studied. The hydrogel prepared with a ß-CD/cellulose/PVA ratio of 20:40:40 and 9 mL of ECH exhibited the highest malathion adsorption rate and capacity, which indicated an equilibrium adsorption capacity of 656.41 mg g-1 at an initial malathion concentration of 1000 mg L-1. Fourier transform infrared spectroscopy (FTIR), ζ-potential, and X-ray photoelectron spectroscopy (XPS) and NMR spectroscopy confirmed malathion adsorption within the hydrogel. The adsorption process followed intraparticle diffusion kinetics and corresponded to Freundlich isotherms, indicating multilayer adsorption on heterogeneous substrates within the adsorbent, facilitated by diffusion.

3.
Sci Rep ; 14(1): 14562, 2024 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-38914625

RESUMO

Sugarcane bagasse fly ash, a residual product resulting from the incineration of biomass to generate power and steam, is rich in SiO2. Sodium silicate is a fundamental material for synthesizing highly porous silica-based adsorbents to serve circular practices. Aflatoxin B1 (AFB1), a significant contaminant in animal feeds, necessitates the integration of adsorbents, crucial for reducing aflatoxin concentrations during the digestive process of animals. This research aimed to synthesize aluminosilicate and zinc silicate derived from sodium silicate based on sugarcane bagasse fly ash, each characterized by a varied molar ratio of aluminum (Al) to silicon (Si) and zinc (Zn) to silicon (Si), respectively. The primary focus of this study was to evaluate their respective capacities for adsorbing AFB1. It was revealed that aluminosilicate exhibited notably superior AFB1 adsorption capabilities compared to zinc silicate and silica. Furthermore, the adsorption efficacy increased with higher molar ratios of Al:Si for aluminosilicate and Zn:Si for zinc silicate. The N2 confirmed AFB1 adsorption within the pores of the adsorbent. In particular, the aluminosilicate variant with a molar ratio of 0.08 (Al:Si) showcased the most substantial AFB1 adsorption capacity, registering at 88.25% after an in vitro intestinal phase. The adsorption ability is directly correlated with the presence of surface acidic sites and negatively charged surfaces. Notably, the kinetics of the adsorption process were best elucidated through the application of the pseudo-second-order model, effectively describing the behavior of both aluminosilicate and zinc silicate in adsorbing AFB1.


Assuntos
Aflatoxina B1 , Silicatos de Alumínio , Celulose , Cinza de Carvão , Saccharum , Silicatos , Compostos de Zinco , Silicatos/química , Adsorção , Silicatos de Alumínio/química , Saccharum/química , Aflatoxina B1/química , Cinza de Carvão/química , Celulose/química , Compostos de Zinco/química
4.
Food Chem ; 446: 138806, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38402767

RESUMO

High pressure processing (HPP) juice often experiences cloud loss during storage, caused by the activity of pectin methylesterase (PME). The combination of HPP with natural pectin methylesterase inhibitor (PMEI) could improve juice stability. However, extracting natural PMEI is challenging. Gene recombination technology offers a solution by efficiently expressing recombinant PMEI from Escherichia coli and Pichia pastoris. Experimental and molecular dynamics simulation were conducted to investigate changes in activity, structure, and interaction of PME and recombinant PMEI during HPP. The results showed PME retained high residual activity, while PMEI demonstrated superior pressure resistance. Under HPP, PMEI's structure remained stable, while the N-terminus of PME's α-helix became unstable. Additionally, the helix at the junction with the PME/PMEI complex changed, thereby affecting its binding. Furthermore, PMEI competed with pectin for active sites on PME, elucidating. The potential mechanism of PME inactivation through the synergistic effects of HPP and PMEI.


Assuntos
Hidrolases de Éster Carboxílico , Proteínas de Plantas , Proteínas de Plantas/metabolismo , Hidrolases de Éster Carboxílico/metabolismo , Domínio Catalítico , Alimentos
5.
Foods ; 12(18)2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37761115

RESUMO

Konjac glucomannan (KGM) is a high-molecular-weight polysaccharide that was originally extracted from the corms (underground storage organs) of Amorphophallus konjac. KGM and its oligomers have been reported as dietary fibers that exhibit an array of health benefits. The depolymerization of KGM via enzymatic hydrolysis at different conditions gives products of low viscosity and can be used for coating materials in microencapsulation. In the present study, konjac glucomannan hydrolysates (KGMHs) were produced by enzymatic hydrolysis using commercial mannanase at pH 4.5 at 70 °C for 5-120 min, then KGMHs' molecular weight (Mw), Degree of Polymerization (DP) and their bioactivities were determined. A longer hydrolysis time resulted in KGMH of a lower DP. Oligoglucomannans (Mw < 10,000) could be obtained after hydrolysis for 20 min. The DP of KGMH rapidly decreased during an early stage of the hydrolysis (first 40 min); DP reached around 7 at the end of the hydrolysis. Antioxidant activities were determined by the DPPH radical scavenging and FRAP assays of KGMHs prepared at pH 4.5 and evaluated at pH 2.0-8.0 depending on pH. KGMH having lower Mw exhibited higher antioxidant activities. KGMHs having the smallest molecular weight (Mw = 419) exhibited the highest DPPH radical scavenging activity. Mw and pH have a greater impact on KGMHs' bioactivities which can be useful information for KGMHs as functional ingredients.

6.
ACS Omega ; 8(22): 19320-19328, 2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37305267

RESUMO

Sugarcane bagasse fly ash is industrial waste produced by incinerating biomass to generate power and steam. The fly ash contains SiO2 and Al2O3, which can be used to prepare aluminosilicate. This latter material exhibits high potential as an adsorbent in various applications, including the livestock industry where issues related to contamination of aflatoxins in animal feeds need to be addressed; addition of adsorbents can help decrease the concentration of aflatoxins during feed digestion. In this study, the effect of the structure of silica prepared from sugarcane bagasse fly ash on physicochemical properties and aflatoxin B1 (AFB1) adsorption capability compared with that of bentonite was investigated. BPS-5, Xerogel-5, MCM-41, and SBA-15 mesoporous silica supports were synthesized using sodium silicate hydrate (Na2SiO3) from sugarcane bagasse fly ash as a silica source. BPS-5, Xerogel-5, MCM-41, and SBA-15 exhibited amorphous structures, while sodium silicate possessed a crystalline structure. BPS-5 possessed larger pore size, pore volume, and pore size distribution with a bimodal mesoporous structure, while Xerogel-5 exhibited lower pore size and pore size distribution with a unimodal mesoporous structure. BPS-5 with a negatively charged surface exhibited the highest AFB1 adsorption capability compared with other porous silica. However, the AFB1 adsorption capability of bentonite was superior to those of all porous silica. Sufficient pore diameter with high total pore volume as well as high intensity of acid sites and negative charge on the surface of the adsorbent is required to increase AFB1 adsorption in the in vitro gastrointestinal tract of animals.

7.
J Food Sci ; 88(7): 3036-3048, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37248778

RESUMO

Nanofibrillated cellulose (NFC) gels simultaneously exhibiting Pickering stabilizing capability and thermally stable green color were developed for use as food additive in thermally processed food emulsion requiring the expression of color. Chopped Centella asiatica plant was mixed with zinc amino acid chelate solution and subject to autoclaving at 130°C for 2 h to form zinc-chlorophylls complex and to remove noncellulosic components. Autoclaved sample was high-shear homogenized at 26,000 rpm for 15 min and microfluidized at either 80, 120, or 160 MPa for 5 passes. An increase in microfluidization pressure resulted in a decrease in NFC diameters; microfluidization at 160 MPa did not nevertheless yield any further reduction in the diameters when compared with that at 120 MPa. From energy consumption point of view, microfluidization at 120 MPa for 5 passes was then noted as optimal condition for preparation of NFC coloring gel; NFC with diameters of 8-42 nm and crystallinity index of 35% was obtained. Freshly prepared gel exhibited gel-like behavior and dark green color. Heating at 121°C for 1 h did not affect diameters, viscoelasticity, and color of the gel. Addition of the gel at 0.9% or 1.2% (w/w) into soybean oil-in-water emulsion, in combination with high-shear homogenization at 18,000 rpm for 5 min, resulted in adequate emulsion stability. The emulsion exhibited stable dark green color and no phase separation after heating at 121°C for 1 h and during storage for 8 weeks. PRACTICAL APPLICATIONS: Information presented here can serve as a guideline for further development of a multifunctional food ingredient exhibiting thermally stable green color and oil-in-water emulsion stabilizing capability. In other words, one simple ingredient can serve at the same time as both natural food colorant and emulsion stabilizer.


Assuntos
Celulose , Centella , Celulose/química , Emulsões/química , Excipientes , Zinco , Água/química , Géis
8.
Food Chem ; 418: 136014, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37001361

RESUMO

Valorization of asparagus leafy by-products as a potential source of rutin through selected extraction and purification protocols was investigated. Protocol resulting in the highest extraction yield was first selected. Crude extract was subject to purification via multiple liquid-liquid back extraction using ethanol, methanol or water as a solvent; selection of the most appropriate purification solvent was made based on rutin solubility. The proposed purification protocol yielded yellow-color crystals, which were characterized by fluorescence microscopy, Fourier-transform infrared spectroscopy and liquid chromatography-mass spectrometry to confirm them as rutin. Purity of rutin was confirmed by ultra-performance liquid chromatography at 97.6%; yield of the purified rutin was determined to be 78.2%. The remaining rutin (21.8%) was found in the liquids collected at various stages of purification; such liquids could be recycled using the same purification process. The proposed protocols are simple, yet effective for rutin extraction and purification from asparagus leafy by-products.


Assuntos
Asparagus , Rutina , Rutina/análise , Asparagus/química , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia Líquida , Solventes , Verduras/química
9.
Crit Rev Food Sci Nutr ; : 1-21, 2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36779284

RESUMO

Smartphone-based assays to inspect pesticides in foods have attracted much attention as such assays can transform tedious laboratory-based assays into real-time, on-site, or even home-based assay and hence overcoming the limitations of conventional assays. Although an array of smartphone-based assays is available, information on the use of these assays for pesticides inspection is scattered. The purposes of this review are therefore to compile, summarize and discuss state-of-the-art as well as advantages and limitations of the relevant technologies. Suggestions are provided for further development of smartphone-based assays for rapid inspection of pesticides in foods. Smartphone-based assays relying on enzyme inhibitions are noted to be nonselective qualitative, capable of reporting results in a quantitative manner only when a sample contains an individual pesticide. Smartphone-based assays relying on chemical reactions also target only individual pesticides. Smartphone-based visible spectroscopy can, on the other hand, inspect individual and multiple pesticides with the aid of appropriate colorimetry-, luminescence-, or fluorescence-based assay. Smartphone-based visible-near infrared and Raman spectroscopies are suitable for simultaneous multiple pesticides inspection. Raman spectroscopy is of particular interest as it can detect pesticides even at lower concentrations. This spectroscopic technique can also serve as a real-time assay with the aid of cloud network computations.

10.
J Food Sci ; 88(3): 1101-1113, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36717377

RESUMO

Production of cellulose nanofiber (CNF) via the use of a more economical and less energy-intensive means is desirable. Once formed, it is necessary to determine whether or not the prepared CNF would be capable of forming a Pickering emulsion as in the case of traditionally prepared nanofiber. In the present study, oil-in-water emulsions, namely, salad dressings, with CNF as a functional ingredient, were prepared. Lime residue powder as the source of dietary fiber was subject to high-shear homogenization to form CNF suspension, which was then mixed with other ingredients. Different contents of fat (20%-40%), egg yolk (0%-4%), and lime residue powder (0%-4%) were tested. The formed CNF successfully acted as a Pickering emulsifier and allowed the production of salad dressings with desirable characteristics at 30%-40% fat, 2% egg yolk, and 2% lime residue powder. The dressings exhibited adequate physicochemical properties and remained stable throughout the storage period of 28 days. PRACTICAL APPLICATION: The presently proposed means would allow the industry to produce cellulose nanofiber (CNF) in a more economical and less energy-intensive manner. The so-produced CNF exhibits comparable properties as traditionally prepared nanofiber and can be used as a stabilizer in food emulsions.


Assuntos
Celulose , Nanofibras , Celulose/química , Nanofibras/química , Pós , Fibras na Dieta , Emulsões/química , Condimentos
11.
Food Chem ; 398: 133898, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-35969994

RESUMO

This review gives, for the first time, a systematic presentation and discussion on the chemistry and use of brazilein in foods. Processes of isolation, purification and quantification of this alternative pigment are firstly reviewed. Molecular structure and color stabilities as well as ways to enhance stability of the pigment are then discussed. Selected applications of the pigment in foods are given. Based on the review of the literature, future studies should focus on the isolation and purification of the pigment prior to its use in foods. Extraction yield and purity of brazilein obtained from the different methods should also be compared. Since the pigment is very sensitive to pH change, its stability should be enhanced prior to its use. Co-pigmentation is among the methods that exhibits potential for stability enhancement of the pigment.


Assuntos
Indenos , Benzopiranos/química , Indenos/química , Estrutura Molecular , Pigmentação
12.
Foods ; 11(24)2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36553689

RESUMO

Meat mimics were prepared from pea protein isolate-alginate gel via 3D printing. The texture of 3D-printed meat mimics was modified by incorporating transglutaminase (TGase) or κ-carrageenan (κc) at 0.3, 0.6 or 0.9% (w/w) into printing material prior to 3D printing. Rheological properties of modified printing material were measured; results were used to support 3D printing results. Textural properties of raw and cooked meat mimics were determined and compared with those of selected animal meats, namely, pork tenderloin, chicken breast, salmon meat and Spanish mackerel. Cooking losses of meat mimics were also determined. G', G″ and tan δ of TGase-modified material were not significantly different from those of the control. In contrast, increasing κc content resulted in increased G' and G″; tan δ of all κc-modified samples decreased from that of the control. Addition of TGase at 0.9% into printing material increased the hardness of raw meat mimics, while κc at 0.9% increased hardness of cooked meat mimics. Raw meat mimics treated with 0.9% TGase exhibited texture closest to raw salmon. Texture of cooked meat mimics treated with 0.9% κc was closest to that of cooked salmon. TGase-treated meat mimics tended to experience lower cooking losses, while κc-treated meat mimics exhibited an opposite trend.

13.
Animals (Basel) ; 12(18)2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36139244

RESUMO

Egg yolk (EY) is an excellent supplement for aquatic animals and has good technofunctionality. Ascorbic acid (AA) is a potent bioactive substance and is essentially added to shrimp feed; however, it is drastically lost in both feed processing and in rearing environments. In this study, AA was microencapsulated in an EY-chitosan (CS) composite. The encapsulated vitamin was then mixed into a shrimp feed mixture to form pelleted feed via twin-screw extrusion. The effects of the EY/AA ratio and the amount of CS on moist heat resistance, production yield, encapsulation efficiency (EE), and morphology of microcapsules were investigated. The molecular interaction of the microcapsule components was analyzed by FTIR. The size and size distribution of the microcapsules were determined using a laser diffraction analyzer. The microstructure was evaluated by SEM. The physical properties of the microcapsule-fortified pelleted feed were determined. The AA retention at each step of feed processing and during exposure to seawater was evaluated. The results showed that the microcapsules had a spherical shape with an average diameter of ~6.0 µm. Decreasing the EY/AA ratio significantly improved the production yield, EE, and morphology of the microcapsules. EY proved to be the key component for moist heat resistance, while CS majorly improved the production yield, EE, and morphology of the microcapsules. The microcapsules showed no adverse impact on feed properties. The loss of AA in food processing and seawater was remarkably improved. The final content of the encapsulated AA remaining in shrimp feed was 16-fold higher than that of the unencapsulated AA.

14.
Food Funct ; 13(19): 10013-10022, 2022 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-36069253

RESUMO

Trimethylamine-N-oxide (TMAO) has been shown to be associated with cardiovascular (CV) disease and cognitive impairment. The association between early stages of cognitive impairment and TMAO in a high CV risk population has not been previously investigated. This study aimed to investigate the association between the plasma TMAO level and cognitive function in a population with a high risk of CV disease. Participants at a high risk of CV were included. The cognition was evaluated using the Montreal Cognitive Assessment. A score lower than 25 out of 30 was used to indicate mild cognitive impairment (MCI). Blood samples of all participants (n = 233) were collected to measure the plasma levels of TMAO and other metabolic parameters, including fasting blood sugar and lipid profiles. Logistic regression was used to evaluate the association between MCI and high plasma TMAO levels, adjusted for confounding factors. Of 233 patients, the mean age of patients in this study was 64 years old (SD 8.4). The median TMAO level was 4.31 µM (IQR 3.95). The high TMAO level was an independent risk factor of MCI (aOR 2.36, 95% CI 1.02 to 5.47; p 0.046), when adjusted for age, gender, health care service scheme, smoking history, metabolic syndrome, and history of established CV events. The high TMAO level was associated with MCI, after adjustment for potential confounding factors. These findings demonstrate that plasma TMAO levels can serve for target prediction as an independent risk factor for MCI in this population.


Assuntos
Doenças Cardiovasculares , Disfunção Cognitiva , Idoso , Biomarcadores , Glicemia , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/etiologia , Disfunção Cognitiva/epidemiologia , Fatores de Risco de Doenças Cardíacas , Humanos , Lipídeos , Metilaminas , Pessoa de Meia-Idade , Óxidos , Fatores de Risco
15.
Compr Rev Food Sci Food Saf ; 21(4): 3455-3479, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35678036

RESUMO

3D food printing has recently attracted significant attention, both from academic and industrial researchers, due to its ability to manufacture customized products in such terms as size, shape, texture, color, and nutrition to meet demands of individual consumers. 4D printing, which is a technique that allows evolution of various characteristics/properties of 3D printed objects over time through external stimulation, has also been gaining more attention. In order to produce defect-free printed objects via both 3D and 4D printing, it is necessary to first identify the causes of defects and then their mitigation strategies. Comprehensive review on these important issues is nevertheless missing. The purpose of this review is to investigate causes and characteristics of defects occurring during and/or after 3D food printing, with a focus on how different factors affect the printing accuracy. Various techniques that can potentially minimize or eliminate printing defects and produce high-quality 3D/4D printed food products without the need for time-consuming trial and error printing experiments are critically discussed. Guidelines to avoid defects to improve the efficiency of future 3D/4D printed food production are given.


Assuntos
Alimentos , Impressão Tridimensional
16.
Food Res Int ; 157: 111214, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35761535

RESUMO

Conventional 3D printing exhibits serious limitation for it requires a support layer upon which more layers can be formed. A designed structure that lacks such a layer is therefore very difficult, if not impossible, to be printed. A novel means to allow 4D deformation of simple 3D-printed object into complex suspended structure is therefore proposed; microwave irradiation was used to induce the desired directed deformation. In this study, yellow flesh peach-buckwheat paste was used to study the effects of model structure and microwave power on directed 4D deformation behavior. Then, finite-element based simulation was conducted to investigate interactions between the printed object and microwave irradiation. Experiments and simulations showed that local high temperature generated by microwave (200 W) caused directional micro puffing at resulting hot spots, forming a driving force to allow 3D-printed objects to rapidly undergo 4D deformation (within 90 s). The verification test also proved that puffing was the main factor driving 4D deformation. This strategy could combine with color and flavor changing microcapsules to realize the synchronous 4D printing process of deformation, color changing, and aroma changing within 15 s, induced by a household microwave oven (700 W). The purpose of this study is to provide a new 4D printing method interacting with consumers in a short time, which could be applied to children's food.


Assuntos
Cor , Micro-Ondas , Odorantes , Amido , Frutas , Odorantes/análise , Amido/análise , Verduras
17.
Int J Biol Macromol ; 207: 434-442, 2022 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-35240219

RESUMO

Despite increasing interest in using nanofibrillated cellulose (NFC) as food thickener and emulsifier, poor water redispersibility of dried NFC, which is form suitable for practical utilization, significantly limits such applications. Studies are lacking on preparation of dried NFC with superior redispersibility. The present study therefore proposed and examined strategies to improve water redispersibility of spray dried NFC via the use of selected co-carriers, i.e., gum Arabic with/without xanthan gum, carboxymethyl cellulose or pectin. Synergistic interactions between NFC and co-carriers, as confirmed by X-ray diffraction (XRD) patterns and Fourier transform infrared (FTIR) spectra, helped prevent NFC agglomeration during spray drying. All reconstituted spray-dried NFC/co-carriers suspensions exhibited shear-thinning and gel-like behaviors, thus supporting the use of such suspensions as thickener and emulsifier. Spray-dried NFC with 80% gum Arabic and 20% xanthan gum (SD-NFC/GA20XG) resulted in suspension with highest viscosity; the suspension also performed best at recovering viscous characteristics of NFC. Water thickened by SD-NFC/GA20XG had strongest shear-thinning behavior, indicating that SD-NFC/GA20XG suspension resulted in smoothest mouth feel and easiest swallowing. Such observations were supported by XRD patterns of SD-NFC/GA20XG, which suggested that its relative crystallinity was the lowest. Its FTIR spectra also showed the highest intensity of -OH bending and carbonyl bands, which are directly related to water adsorption capability of NFC. Use of reconstituted SD-NFC/GA20XG as emulsifier also resulted in highest stability for oil-in-water (O/W) Pickering emulsion during storage for up to 30 days.


Assuntos
Celulose , Água , Emulsificantes , Goma Arábica , Secagem por Atomização , Suspensões
18.
Meat Sci ; 185: 108715, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34839193

RESUMO

Carbon dots (CDs) were prepared and noted to exhibit potent scavenging activities against DPPH·, ·OH, and O2·- radicals. Addition of CDs to frying oil as a means to improve oxidative stability and minimize quality changes of fried meatballs during refrigerated storage was investigated in comparison with the use of tert-butylhydroquinone (TBHQ) and carnosic acid (CA). Compared with the control sample, 0.05% CDs significantly reduced thiobarbituric acid reactive substances value, carbonyl and total volatile basic nitrogen contents of fried meatballs. Both lipid and protein oxidation inhibition capabilities of CDs were higher than those of 0.05% CA but lower than those of 0.02% TBHQ. Total sensory score of sample with CDs (7.1 ± 0.06) was significantly higher than those of the control (4.7 ± 0.03) and sample with TBHQ (6.4 ± 0.04). CDs could delay oxidation of fried meatballs during refrigerated storage and can well serve as an alternative antioxidant.


Assuntos
Antioxidantes , Carbono , Óleos , Oxirredução , Estresse Oxidativo
19.
Crit Rev Food Sci Nutr ; 62(9): 2355-2374, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33938776

RESUMO

Foods for special applications have recently received much attention due to rapid development of space and military industries as well as to frequent occurrence of natural and man-made disasters. Since the way such foods are processed clearly and directly affects their consumer's acceptability and shelf life, it is of interest to explore in detail how these special foods can be processed. This article presents a review on the difficulties in the processing, application and storage as well as on how to ensure the shelf life and acceptability of special foods through the use of efficient processing technologies. Emphasis is made on the use of both conventional and alternative thermal processing and irradiation technologies. Appropriate packaging technologies for each of the discussed special foods are also mentioned along with the way to overcome the problem of product quality degradation. Through comparison and analysis, it is found that foods with different attributes require different technologies and processes to achieve desirable results. Combined use of multiple technologies has also noted to be advantageous.


Assuntos
Manipulação de Alimentos , Alimentos Especializados , Manipulação de Alimentos/métodos , Humanos
20.
J Texture Stud ; 52(5-6): 561-566, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34536023

RESUMO

Ultrasonication was used to develop softer sticky rice for elder adults. Textural properties of original sticky rice (oSR) and ultrasonically modified sticky rice (mSR) were determined. In addition, jaw muscle activities during mastication of both oSR and mSR were investigated. Twenty-seven healthy elderly subjects, age 68.9 ± 7.6 years, were asked to masticate both types of sticky rice in random sequence for three times with a 5-min rest between each test. Activities of bilateral masseter and suprahyoid muscles were recorded. Root mean square (RMS) and mastication duration were analyzed. After mastication trials, subjects were asked to rate preference and softness of the samples. mSR exhibited significantly lower hardness than oSR, while cohesiveness and adhesiveness values of the two samples were not significantly different. Interestingly, all the muscle activities were not significantly different between masticating oSR and mSR, whereas the number of chewing cycles while chewing the mSR was larger. However, 92% of the subjects preferred mSR and felt that it was softer. mSR may therefore be regarded as having potential for elder people who have difficulty masticating hard solid foods based on its lower hardness and higher level of preference compared to oSR.


Assuntos
Transtornos de Deglutição , Oryza , Adulto , Idoso , Eletromiografia , Humanos , Músculo Masseter/fisiologia , Mastigação/fisiologia , Pessoa de Meia-Idade , Projetos Piloto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA