Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 9363, 2024 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-39477950

RESUMO

The development of artificial cells has led to fundamental insights into the functional processes of living cells while simultaneously paving the way for transformative applications in biotechnology and medicine. A common method of generating artificial cells is to encapsulate protein expression systems within lipid vesicles. However, to communicate with the external environment, protein translocation across lipid membranes must take place. In living cells, protein transport across membranes is achieved with the aid of complex translocase systems which are difficult to reconstitute into artificial cells. Thus, there is need for simple mechanisms by which proteins can be encoded and expressed inside synthetic compartments yet still be externally displayed. Here we present a genetically encodable membrane functionalization system based on mutants of pore-forming proteins. We modify the membrane translocating loop of α-hemolysin to translocate functional peptides up to 52 amino acids across lipid membranes. Full membrane translocation occurs in the absence of any translocase machinery and the translocated peptides are recognized by specific peptide-binding ligands on the opposing membrane side. Engineered hemolysins can be used for genetically programming artificial cells to display interacting peptide pairs, enabling their assembly into artificial tissue-like structures.


Assuntos
Células Artificiais , Membrana Celular , Proteínas Hemolisinas , Engenharia de Proteínas , Transporte Proteico , Proteínas Hemolisinas/metabolismo , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/química , Células Artificiais/metabolismo , Engenharia de Proteínas/métodos , Membrana Celular/metabolismo , Peptídeos/metabolismo , Peptídeos/química , Membranas Artificiais , Escherichia coli/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética
2.
Nat Chem ; 2024 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-39478161

RESUMO

All known forms of life are composed of cells, whose boundaries are defined by lipid membranes that separate and protect cell contents from the environment. It is unknown how the earliest forms of life were compartmentalized. Several models have suggested a role for single-chain lipids such as fatty acids, but the membranes formed are often unstable, particularly when made from shorter alkyl chains (≤C8) that were probably more prevalent on prebiotic Earth. Here we show that the amino acid cysteine can spontaneously react with two short-chain (C8) thioesters to form diacyl lipids, generating protocell-like membrane vesicles. The three-component reaction takes place rapidly in water using low concentrations of reactants. Silica can catalyse the formation of protocells through a simple electrostatic mechanism. Several simple aminothiols react to form diacyl lipids, including short peptides. The protocells formed are compatible with functional ribozymes, suggesting that coupling of multiple short-chain precursors may have provided membrane building blocks during the early evolution of cells.

3.
bioRxiv ; 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38746395

RESUMO

Live cell imaging of lipids and other metabolites is a long-standing challenge in cell biology. Bioorthogonal labeling tools allow for the conjugation of fluorophores to several phospholipid classes, but cannot discern their trafficking between adjacent organelles or asymmetry across individual membrane leaflets. Here we present fluorogen-activating coincidence sensing (FACES), a chemogenetic tool capable of quantitatively imaging subcellular lipid pools and reporting their transbilayer orientation in living cells. FACES combines bioorthogonal chemistry with genetically encoded fluorogen-activating proteins (FAPs) for reversible proximity sensing of conjugated molecules. We first validate this approach for quantifying discrete phosphatidylcholine pools in the ER and mitochondria that are trafficked by lipid transfer proteins. We then show that transmembrane domain-containing FAPs can be used to reveal the membrane asymmetry of multiple lipid classes that are generated in the trans-Golgi network. Lastly, we demonstrate that FACES is a generalizable tool for subcellular bioorthogonal imaging by measuring changes in mitochondrial N -acetylhexosamine levels. These results demonstrate the use of fluorogenic tags for spatially-defined molecular imaging.

4.
Chem Commun (Camb) ; 60(29): 3930-3933, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38497420

RESUMO

We describe a bottom-up synthesis of giant vesicles (GVs) utilizing an artificial stimuli-responsive diazobenzene lipid building block. Controlled by light, the GVs can exhibit dynamic behaviors, including reversible formation, the generation of highly multilamellar assemblies, and vesicle capturing and releasing events.

5.
Angew Chem Int Ed Engl ; 63(1): e202311635, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-37919232

RESUMO

There has been increasing interest in methods to generate synthetic lipid membranes as key constituents of artificial cells or to develop new tools for remodeling membranes in living cells. However, the biosynthesis of phospholipids involves elaborate enzymatic pathways that are challenging to reconstitute in vitro. An alternative approach is to use chemical reactions to non-enzymatically generate natural or non-canonical phospholipids de novo. Previous reports have shown that synthetic lipid membranes can be formed in situ using various ligation chemistries, but these methods lack biocompatibility and/or suffer from slow kinetics at physiological pH. Thus, it would be valuable to develop chemoselective strategies for synthesizing phospholipids from water-soluble precursors that are compatible with synthetic or living cells Here, we demonstrate that amide-forming ligations between lipid precursors bearing hydroxylamines and α-ketoacids (KAs) or potassium acyltrifluoroborates (KATs) can be used to prepare non-canonical phospholipids at physiological pH conditions. The generated amide-linked phospholipids spontaneously self-assemble into cell-like micron-sized vesicles similar to natural phospholipid membranes. We show that lipid synthesis using KAT ligation proceeds extremely rapidly, and the high selectivity and biocompatibility of the approach facilitates the in situ synthesis of phospholipids and associated membranes in living cells.


Assuntos
Amidas , Fosfolipídeos , Hidroxilaminas
6.
J Am Chem Soc ; 145(49): 27149-27159, 2023 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-38039527

RESUMO

In cells, a vast number of membrane lipids are formed by the enzymatic O-acylation of polar head groups with acylating agents such as fatty acyl-CoAs. Although such ester-containing lipids appear to be a requirement for life on earth, it is unclear if similar types of lipids could have spontaneously formed in the absence of enzymatic machinery at the origin of life. There are few examples of enzyme-free esterification of amphiphiles in water and none that can occur in water at physiological pH using biochemically relevant acylating agents. Here we report the unexpected chemoselective O-acylation of 1,2-amino alcohol amphiphiles in water directed by Cu(II) and several other transition metal ions. In buffers containing Cu(II) ions, mixing biological 1,2-amino alcohol amphiphiles such as sphingosylphosphorylcholine with biochemically relevant acylating agents, namely, acyl adenylates and acyl-CoAs, leads to the formation of the O-acylation product with high selectivity. The resulting O-acylated sphingolipids self-assemble into vesicles with markedly different biophysical properties than those formed from their N-acyl counterparts. We also demonstrate that Cu(II) can direct the O-acylation of alternative 1,2-amino alcohols, including prebiotically relevant 1,2-amino alcohol amphiphiles, suggesting that simple mechanisms for aqueous esterification may have been prevalent on earth before the evolution of enzymes.


Assuntos
Prebióticos , Água , Esterificação , Acil Coenzima A/metabolismo , Lipídeos de Membrana , Amino Álcoois , Acilação
7.
J Am Chem Soc ; 145(47): 25815-25823, 2023 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-37963186

RESUMO

Living systems create remarkable complexity from a limited repertoire of biological building blocks by controlling assembly dynamics at the molecular, cellular, and multicellular level. An open question is whether simplified synthetic cells can gain similar complex functionality by being driven away from equilibrium. Here, we describe a dynamic synthetic cell system assembled using artificial lipids that are responsive to both light and chemical stimuli. Irradiation of disordered aggregates of lipids leads to the spontaneous emergence of giant cell-like vesicles, which revert to aggregates when illumination is turned off. Under irradiation, the synthetic cell membranes can interact with chemical building blocks, remodeling their composition and forming new structures that prevent the membranes from undergoing retrograde aggregation processes. The remodeled light-responsive synthetic cells reversibly alter their shape under irradiation, transitioning from spheres to rodlike shapes, mimicking energy-dependent functions normally restricted to living materials. In the presence of noncovalently interacting multivalent polymers, light-driven shape changes can be used to trigger vesicle cross-linking, leading to the formation of functional synthetic tissues. By controlling light and chemical inputs, the stepwise, one-pot transformation of lipid aggregates to multivesicular synthetic tissues is feasible. Our results suggest a rationale for why even early protocells may have required and evolved simple mechanisms to harness environmental energy sources to coordinate hierarchical assembly processes.


Assuntos
Células Artificiais , Membrana Celular , Lipídeos
8.
Interface Focus ; 13(5): 20230019, 2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37577004

RESUMO

Construction of artificial cells requires the development of straightforward methods for mimicking natural phospholipid membrane formation. Here we describe the use of direct aminolysis ligations to spontaneously generate biomimetic phospholipid membranes from water-soluble starting materials. Additionally, we explore the suitability of such biomimetic approaches for driving the in situ formation of native phospholipid membranes. Our studies suggest that non-enzymatic ligation reactions could have been important for the synthesis of phospholipid-like membranes during the origin of life, and might be harnessed as simplified methods to enable the generation of lipid compartments in artificial cells.

9.
Chembiochem ; 24(18): e202300454, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37500587

RESUMO

Combinations of biological macromolecules can provide researchers with precise control and unique methods for regulating, studying, and manipulating cellular processes. For instance, combining the unmatched encodability afforded by nucleic acids with the diverse functionality of proteins has transformed our approach to solving several problems in chemical biology. Despite these benefits, there remains a need for new methods to site-specifically generate conjugates between different classes of biomolecules. Here we present a fully enzymatic strategy for combining nucleic acids and proteins using SNAP-tag and RNA-TAG (transglycosylation at guanosine) technologies via a bifunctional preQ1-benzylguanine small molecule probe. We demonstrate the robust ability of this technology to assemble site-specific SNAP-tag - RNA conjugates with RNAs of varying length and use our conjugation strategy to recruit an endonuclease to an RNA of interest for targeted degradation. We foresee that combining SNAP-tag and RNA-TAG will facilitate researchers to predictably engineer novel macromolecular complexes.


Assuntos
Proteínas , RNA , Proteínas/química , Fenômenos Químicos
10.
Chemphyschem ; 24(20): e202300404, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37486881

RESUMO

Bottom-up design of biomimetic organelles has gained recent attention as a route towards understanding the transition between non-living matter and life. Despite various artificial lipid membranes being developed, the specific relations between lipid structure, composition, interfacial properties, and morphology are not currently understood. Sponge-phase droplets contain dense, nonlamellar lipid bilayer networks that capture the complexities of the endoplasmic reticulum (ER), making them ideal artificial models of such organelles. Here, we combine ultrafast two-dimensional infrared (2D IR) spectroscopy and molecular dynamics simulations to investigate the interfacial H-bond networks in sponge-phase droplets composed of glycolipid and nonionic detergents. In the sponge phase, the interfacial environments are more hydrated and water molecules confined to the nanometer-scale aqueous channels in the sponge phase exhibit dynamics that are significantly slower compared to bulk water. Surfactant configurations and microscopic phase separation play a dominant role in determining membrane curvature and slow dynamics observed in the sponge phase. The studies suggest that H-bond networks within the nanometer-scale channels are disrupted not only by confinement but also by the interactions of surfactants, which extend 1-2 nm from the bilayer surface. The results provide a molecular-level description for controlling phase and morphology in the design of synthetic lipid organelles.


Assuntos
Células Artificiais , Gotículas Lipídicas , Espectrofotometria Infravermelho/métodos , Ligação de Hidrogênio , Água/química , Tensoativos/química , Glicolipídeos
11.
J Am Chem Soc ; 145(14): 8099-8106, 2023 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-36988146

RESUMO

Bacterial tRNA guanine transglycosylases (TGTs) catalyze the exchange of guanine for the 7-deazaguanine queuine precursor, prequeuosine1 (preQ1). While the native nucleic acid substrate for bacterial TGTs is the anticodon loop of queuine-cognate tRNAs, the minimum recognition sequence for the enzyme is a structured hairpin containing the target G nucleobase in a "UGU" loop motif. Previous work has established an RNA modification system, RNA-TAG, in which Escherichia coli TGT exchanges the target G on an RNA of interest for chemically modified preQ1 substrates linked to a small-molecule reporter such as biotin or a fluorophore. While extending the substrate scope of RNA transglycosylases to include DNA would enable numerous applications, it has been previously reported that TGT is incapable of modifying native DNA. Here, we demonstrate that TGT can in fact recognize and label specific DNA substrates. Through iterative testing of rationally mutated DNA hairpin sequences, we determined the minimal sequence requirements for transglycosylation of unmodified DNA by E. coli TGT. Controlling steric constraint in the DNA hairpin dramatically affects labeling efficiency, and, when optimized, can lead to near-quantitative site-specific modification. We demonstrate the utility of our newly developed DNA-TAG system by rapidly synthesizing probes for fluorescent Northern blotting of spliceosomal U6 RNA and RNA FISH visualization of the long noncoding RNA, metastasis-associated lung adenocarcinoma transcript 1 (MALAT1). The ease and convenience of the DNA-TAG system will provide researchers with a tool for accessing a wide variety of versatile and affordable modified DNA substrates.


Assuntos
Escherichia coli , RNA , RNA/química , RNA de Transferência , DNA , Guanina
12.
bioRxiv ; 2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36747847

RESUMO

Bacterial tRNA guanine transglycosylases (TGTs) catalyze the exchange of guanine for the 7-deazaguanine queuine precursor, prequeuosine1 (preQ1). While the native nucleic acid substrate for bacterial TGTs is the anticodon loop of queuine-cognate tRNAs, the minimum recognition sequence for the enzyme is a structured hairpin containing the target G nucleobase in a "UGU" loop motif. Previous work has established an RNA modification system, RNA-TAG, in which E. coli TGT exchanges the target G on an RNA of interest for chemically modified preQ1 substrates linked to a small molecule reporter such as biotin or a fluorophore. While extending the substrate scope of RNA transglycosylases to include DNA would enable numerous applications, it has been previously reported that TGT is incapable of modifying native DNA. Here we demonstrate that TGT can in fact recognize and label specific DNA substrates. Through iterative testing of rationally mutated DNA hairpin sequences, we determined the minimal sequence requirements for transglycosylation of unmodified DNA by E. coli TGT. Controlling steric constraint in the DNA hairpin dramatically affects labeling efficiency, and, when optimized, can lead to near quantitative site-specific modification. We demonstrate the utility of our newly developed DNA-TAG system by rapidly synthesizing probes for fluorescent Northern blotting of spliceosomal U6 RNA and RNA FISH visualization of the long noncoding RNA, MALAT1. The ease and convenience of the DNA-TAG system will provide researchers with a tool for accessing a wide variety of affordable modified DNA substrates.

14.
J Phys Chem B ; 127(8): 1771-1779, 2023 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-36795462

RESUMO

Living cells feature lipid compartments which exhibit a variety of shapes and structures that assist essential cellular processes. Many natural cell compartments frequently adopt convoluted nonlamellar lipid architectures that facilitate specific biological reactions. Improved methods for controlling the structural organization of artificial model membranes would facilitate investigations into how membrane morphology affects biological functions. Monoolein (MO) is a single-chain amphiphile which forms nonlamellar lipid phases in aqueous solution and has wide applications in nanomaterial development, the food industry, drug delivery, and protein crystallization. However, even if MO has been extensively studied, simple isosteres of MO, while readily accessible, have seen limited characterization. An improved understanding of how relatively minor changes in lipid chemical structure affect self-assembly and membrane topology could instruct the construction of artificial cells and organelles for modeling biological structures and facilitate nanomaterial-based applications. Here, we investigate the differences in self-assembly and large-scale organization between MO and two MO lipid isosteres. We show that replacing the ester linkage between the hydrophilic headgroup and hydrophobic hydrocarbon chain with a thioesther or amide functional group results in the assembly of lipid structures with different phases not resembling those formed by MO. Using light and cryo-electron microscopy, small-angle X-ray scattering, and infrared spectroscopy, we demonstrate differences in the molecular ordering and large-scale architectures of the self-assembled structures made from MO and its isosteric analogues. These results improve our understanding of the molecular underpinnings of lipid mesophase assembly and may facilitate the development of MO-based materials for biomedicine and as model lipid compartments.


Assuntos
Glicerídeos , Proteínas , Microscopia Crioeletrônica , Glicerídeos/química , Cristalização
15.
Bioconjug Chem ; 34(1): 169-173, 2023 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-36534355

RESUMO

Conjugating small-molecule ligands to synthetic motifs that can localize to specific organelles or membranes in living cells is a practical approach to develop compounds as chimeric tools or drugs that can manipulate biological processes in a subcellular site-specific manner. However, the number of available organelle-targeted synthetic motifs for small-molecule localization is limited. We have recently developed a synthetic myristoyl-DCys motif for small-molecule localization that undergoes S-palmitoylation via the cellular palmitoylation machinery and localizes to the Golgi surface. Herein, we show that the lipid acyl chain of the myristoyl (C14)-DCys motif can be as short as 10-carbons and still retain the palmitoylation-dependent Golgi localization property in cells. This discovery led to the identification of four new derivatives for small-molecule localization: tridecanoyl (C13)-, dodecanoyl (C12)-, undecanoyl (C11)-, and decanoyl (C10)-DCys motifs. We demonstrated that even the short decanoyl-DCys palmitoylation motif could be used to generate small-molecule ligand conjugates that functioned as chemical tools for controlling protein localization and cell signaling. The miniaturized synthetic palmitoylation motifs identified in this work may find applications in creating various Golgi-localizable chimeric molecules for use in chemical biology and drug development.


Assuntos
Complexo de Golgi , Lipoilação , Complexo de Golgi/metabolismo , Membrana Celular/metabolismo , Transporte Proteico , Transdução de Sinais
16.
Acc Chem Res ; 55(21): 3099-3109, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36215688

RESUMO

The structural boundaries of living cells are composed of numerous membrane-forming lipids. Lipids not only are crucial for the cellular compartmentalization but also are involved in cell signaling as well as energy storage. Abnormal lipid levels have been linked to severe human diseases such as cancer, multiple sclerosis, neurodegenerative diseases, as well as lysosomal storage disorders. Given their biological significance, there is immense interest in studying lipids and their effect on cells. However, limiting factors include the low solubility of lipids, their structural complexity, and the challenge of using genetic techniques to directly manipulate lipid structure. Current methods to study lipids rely mostly on lipidomics, which analyzes the composition of lipid extracts using mass spectrometry. Although, these efforts have successfully catalogued and profiled a great number of lipids in cells, many aspects about their exact functional role and subcellular distribution remain enigmatic.In this Account, we outline how our laboratory developed and applied different bioconjugation strategies to study the role of lipids and lipid modifications in cells. Inspired by our ongoing work on developing lipid bioconjugation strategies to generate artificial cell membranes, we developed a ceramide synthesis method in live cells using a salicylaldehyde ester that readily reacts with sphingosine in form of a traceless ceramide ligation. Our study not only confirmed existing knowledge about the association of ceramides with cell death, but also gave interesting new findings about the structure-function relationship of ceramides in apoptosis. Our initial efforts led us to investigate probes that detect endogenous sphingolipids using live cell imaging. We describe the development of a fluorogenic probe that reacts chemoselectively with sphingosine in living cells, enabling the detection of elevated endogenous levels of this biomarker in human disease. Building on our interest in the fluorescence labeling of lipids, we have also explored the use of bioorthogonal reactions to label chemically synthesized lipid probes. We discuss the development of photocaged dihydrotetrazine lipids, where the initiation of the bioorthogonal reaction can be triggered by visible light, allowing for live cell modification of membranes with spatiotemporal control.Finally, proteins are often post-translationally modified by lipids, which have important effects on protein subcellular localization and function. Controlling lipid modifications with small molecule probes could help reveal the function of lipid post-translational modifications and could potentially inspire novel therapeutic strategies. We describe how our previous studies on synthetic membrane formation inspired us to develop an amphiphilic cysteine derivative that depalmitoylates membrane-bound S-acylated proteins in live cells. Ultimately, we applied this amphiphile mediated depalmitoylation (AMD) in studies investigating the palmitoylation of cancer relevant palmitoylated proteins in healthy and diseased cells.


Assuntos
Ceramidas , Esfingosina , Humanos , Ceramidas/química , Ceramidas/metabolismo , Proteínas/química , Processamento de Proteína Pós-Traducional , Cisteína/metabolismo
17.
Nat Chem ; 14(9): 1078-1085, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35788560

RESUMO

Bioorthogonal cycloaddition reactions between tetrazines and strained dienophiles are widely used for protein, lipid and glycan labelling because of their extremely rapid kinetics. However, controlling this chemistry in the presence of living mammalian cells with a high degree of spatial and temporal precision remains a challenge. Here we demonstrate a versatile approach to light-activated formation of tetrazines from photocaged dihydrotetrazines. Photouncaging, followed by spontaneous transformation to reactive tetrazine, enables live-cell spatiotemporal control of rapid bioorthogonal cycloaddition with dienophiles such as trans-cyclooctenes. Photocaged dihydrotetrazines are stable in conditions that normally degrade tetrazines, enabling efficient early-stage incorporation of bioorthogonal handles into biomolecules such as peptides. Photocaged dihydrotetrazines allow the use of non-toxic light to trigger tetrazine ligations on living mammalian cells. By tagging reactive phospholipids with fluorophores, we demonstrate modification of HeLa cell membranes with single-cell spatial resolution. Finally, we show that photo-triggered therapy is possible by coupling tetrazine photoactivation with strategies that release prodrugs in response to tetrazine ligation.


Assuntos
Compostos Heterocíclicos , Animais , Reação de Cicloadição , Corantes Fluorescentes , Células HeLa , Humanos , Mamíferos , Proteínas
18.
Angew Chem Int Ed Engl ; 61(29): e202200549, 2022 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-35546783

RESUMO

Cell membranes define the boundaries of life and primarily consist of phospholipids. Living organisms assemble phospholipids by enzymatically coupling two hydrophobic tails to a soluble polar head group. Previous studies have taken advantage of micellar assembly to couple single-chain precursors, forming non-canonical phospholipids. However, biomimetic nonenzymatic coupling of two alkyl tails to a polar head-group remains challenging, likely due to the sluggish reaction kinetics of the initial coupling step. Here we demonstrate rapid de novo formation of biomimetic liposomes in water using dual oxime bond formation between two alkyl chains and a phosphocholine head group. Membranes can be generated from non-amphiphilic, water-soluble precursors at physiological conditions using micromolar concentrations of precursors. We demonstrate that functional membrane proteins can be reconstituted into synthetic oxime liposomes from bacterial extracts in the absence of detergent-like molecules.


Assuntos
Lipossomos , Oximas , Membrana Celular/metabolismo , Lipossomos/química , Fosfolipídeos/química , Água
19.
J Am Chem Soc ; 144(10): 4487-4495, 2022 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-35257575

RESUMO

Chemical cross-linking enables rapid identification of RNA-protein and RNA-nucleic acid inter- and intramolecular interactions. However, no method exists to site-specifically and covalently cross-link two user-defined sites within an RNA. Here, we develop RNA-CLAMP, which enables site-specific and enzymatic cross-linking (clamping) of two selected guanine residues within an RNA. Intramolecular clamping can disrupt normal RNA function, whereas subsequent photocleavage of the cross-linker restores activity. We used RNA-CLAMP to clamp two stem loops within the single-guide RNA (sgRNA) of the CRISPR-Cas9 gene editing system via a photocleavable cross-linker, completely inhibiting gene editing. Visible light irradiation cleaved the cross-linker and restored gene editing with high spatiotemporal resolution. Design of two photocleavable linkers responsive to different wavelengths of light allowed multiplexed photoactivation of gene editing in mammalian cells. This photoactivated CRISPR-Cas9 gene editing platform benefits from undetectable background activity, provides a choice of activation wavelengths, and has multiplexing capabilities.


Assuntos
Edição de Genes , RNA Guia de Cinetoplastídeos , Animais , Sistemas CRISPR-Cas/genética , Mamíferos/genética , RNA Guia de Cinetoplastídeos/genética
20.
Chembiochem ; 23(5): e202100624, 2022 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-34936727

RESUMO

All cells use organized lipid compartments to facilitate specific biological functions. Membrane-bound organelles create defined spatial environments that favor unique chemical reactions while isolating incompatible biological processes. Despite the fundamental role of cellular organelles, there is a scarcity of methods for preparing functional artificial lipid-based compartments. Here, we demonstrate a robust bioconjugation system for sequestering proteins into zwitterionic lipid sponge phase droplets. Incorporation of benzylguanine (BG)-modified phospholipids that form stable covalent linkages with an O6 -methylguanine DNA methyltransferase (SNAP-tag) fusion protein enables programmable control of protein capture. We show that this methodology can be used to anchor hydrophilic proteins at the lipid-aqueous interface, concentrating them within an accessible but protected chemical environment. SNAP-tag technology enables the integration of proteins that regulate complex biological functions in lipid sponge phase droplets, and should facilitate the development of advanced lipid-based artificial organelles.


Assuntos
Gotículas Lipídicas , O(6)-Metilguanina-DNA Metiltransferase , O(6)-Metilguanina-DNA Metiltransferase/metabolismo , Fosfolipídeos , Proteínas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA