Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 6(7): e04489, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32728643

RESUMO

The expression of a gene is commonly estimated by quantitative PCR (qPCR) using RNA isolated from a large number of pooled cells. Such pooled samples often have subpopulations of cells with different levels of expression of the target gene. Estimation of gene expression from an ensemble of cells obscures the pattern of expression in different subpopulations. Physical separation of various subpopulations is a demanding task. We have developed a computational tool, Deconvolution of Ensemble through Bayes-approach (DEBay), to estimate cell type-specific gene expression from qPCR data of a mixed population. DEBay estimates Normalized Gene Expression Coefficient (NGEC), which is a relative measure of the expression of the target gene in each cell type in a population. NGEC has a direct algebraic correspondence with the normalized fold change in gene expression measured by qPCR. DEBay can deconvolute both time-dependent and -independent gene expression profiles. It uses the Bayesian method of model selection and parameter estimation. We have evaluated DEBay using synthetic and real experimental data. DEBay is implemented in Python. A GUI of DEBay and its source code are available for download at SourceForge (https://sourceforge.net/projects/debay).

2.
J Clin Med ; 8(7)2019 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-31247884

RESUMO

Epithelial to Mesenchymal Transition (EMT) is a multi-state process. Here, we investigated phenotypic state transition dynamics of Epidermal Growth Factor (EGF)-induced EMT in a breast cancer cell line MDA-MB-468. We have defined phenotypic states of these cells in terms of their morphologies and have shown that these cells have three distinct morphological states-cobble, spindle, and circular. The spindle and circular states are the migratory phenotypes. Using quantitative image analysis and mathematical modeling, we have deciphered state transition trajectories in different experimental conditions. This analysis shows that the phenotypic state transition during EGF-induced EMT in these cells is reversible, and depends upon the dose of EGF and level of phosphorylation of the EGF receptor (EGFR). The dominant reversible state transition trajectory in this system was cobble to circular to spindle to cobble. We have observed that there exists an ultrasensitive on/off switch involving phospho-EGFR that decides the transition of cells in and out of the circular state. In general, our observations can be explained by the conventional quasi-potential landscape model for phenotypic state transition. As an alternative to this model, we have proposed a simpler discretized energy-level model to explain the observed state transition dynamics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA