Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 10(9): e0136679, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26325203

RESUMO

We previously showed that Eps15 homology domain-containing 1 (EHD1) interacts with ferlin proteins to regulate endocytic recycling. Myoblasts from Ehd1-null mice were found to have defective recycling, myoblast fusion, and consequently smaller muscles. When expressed in C2C12 cells, an ATPase dead-EHD1 was found to interfere with BIN1/amphiphysin 2. We now extended those findings by examining Ehd1-heterozygous mice since these mice survive to maturity in normal Mendelian numbers and provide a ready source of mature muscle. We found that heterozygosity of EHD1 was sufficient to produce ectopic and excessive T-tubules, including large intracellular aggregates that contained BIN1. The disorganized T-tubule structures in Ehd1-heterozygous muscle were accompanied by marked elevation of the T-tubule-associated protein DHPR and reduction of the triad linker protein junctophilin 2, reflecting defective triads. Consistent with this, Ehd1-heterozygous muscle had reduced force production. Introduction of ATPase dead-EHD1 into mature muscle fibers was sufficient to induce ectopic T-tubule formation, seen as large BIN1 positive structures throughout the muscle. Ehd1-heterozygous mice were found to have strikingly elevated serum creatine kinase and smaller myofibers, but did not display findings of muscular dystrophy. These data indicate that EHD1 regulates the maintenance of T-tubules through its interaction with BIN1 and links T-tubules defects with elevated creatine kinase and myopathy.


Assuntos
Fibras Musculares Esqueléticas/fisiologia , Músculo Esquelético/fisiologia , Proteínas de Transporte Vesicular/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Animais , Creatina Quinase/metabolismo , Heterozigoto , Masculino , Camundongos , Doenças Musculares/metabolismo , Proteínas do Tecido Nervoso/fisiologia , Proteínas Supressoras de Tumor/fisiologia
2.
Am J Pathol ; 184(1): 248-59, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24177035

RESUMO

Dysferlin is a membrane-associated protein implicated in muscular dystrophy and vesicle movement and function in muscles. The precise role of dysferlin has been debated, partly because of the mild phenotype in dysferlin-null mice (Dysf). We bred Dysf mice to mice lacking myoferlin (MKO) to generate mice lacking both myoferlin and dysferlin (FER). FER animals displayed progressive muscle damage with myofiber necrosis, internalized nuclei, and, at older ages, chronic remodeling and increasing creatine kinase levels. These changes were most prominent in proximal limb and trunk muscles and were more severe than in Dysf mice. Consistently, FER animals had reduced ad libitum activity. Ultrastructural studies uncovered progressive dilation of the sarcoplasmic reticulum and ectopic and misaligned transverse tubules in FER skeletal muscle. FER muscle, and Dysf- and MKO-null muscle, exuded lipid, and serum glycerol levels were elevated in FER and Dysf mice. Glycerol injection into muscle is known to induce myopathy, and glycerol exposure promotes detachment of transverse tubules from the sarcoplasmic reticulum. Dysf, MKO, and FER muscles were highly susceptible to glycerol exposure in vitro, demonstrating a dysfunctional sarcotubule system, and in vivo glycerol exposure induced severe muscular dystrophy, especially in FER muscle. Together, these findings demonstrate the importance of dysferlin and myoferlin for transverse tubule function and in the genesis of muscular dystrophy.


Assuntos
Glicerol/metabolismo , Proteínas de Membrana/genética , Proteínas Musculares/genética , Músculo Esquelético/patologia , Distrofias Musculares/patologia , Animais , Modelos Animais de Doenças , Disferlina , Feminino , Glicerol/toxicidade , Immunoblotting , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Knockout , Microscopia Eletrônica de Transmissão , Microscopia de Fluorescência , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Distrofias Musculares/genética , Distrofias Musculares/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA