Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Ann Hematol ; 102(5): 1029-1036, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36892591

RESUMO

Pyruvate kinase deficiency (PKD) is an autosomal recessive condition, caused due to homozygous or compound heterozygous mutation in the PKLR gene resulting in non-spherocytic hereditary hemolytic anemia. Clinical manifestations in PKD patients vary from moderate to severe lifelong hemolytic anemia either requiring neonatal exchange transfusion or blood transfusion support. Measuring PK enzyme activity is the gold standard approach for diagnosis but residual activity must be related to the increased reticulocyte count. The confirmatory diagnosis is provided by PKLR gene sequencing by conventional as well as targeted next-generation sequencing involving genes associated with enzymopathies, membranopathies, hemoglobinopathies, and bone marrow failure disorders. In this study, we report the mutational landscape of 45 unrelated PK deficiency cases from India. The genetic sequencing of PKLR revealed 40 variants comprising 34 Missense Mutations (MM), 2 Nonsense Mutations (NM), 1 Splice site, 1 Intronic, 1 Insertion, and 1 Large Base Deletion. The 17 novel variants identified in this study are A115E, R116P, A423G, K313I, E315G, E318K, L327P, M377L, A423E, R449G, H507Q, E538K, G563S, c.507 + 1 G > C, c.801_802 ins A (p.Asp268ArgfsTer48), IVS9dsA-T + 3, and one large base deletion. In combination with previous reports on PK deficiency, we suggest c.880G > A, c.943G > A, c.994G > A, c.1456C > T, c.1529G > A are the most frequently observed mutations in India. This study expands the phenotypic and molecular spectrum of PKLR gene disorders and also emphasizes the importance of combining both targeted next-generation sequencing with bioinformatics analysis and detailed clinical evaluation to elaborate a more accurate diagnosis and correct diagnosis for transfusion dependant hemolytic anemia in a cohort of the Indian population.


Assuntos
Anemia Hemolítica Congênita não Esferocítica , Anemia Hemolítica , Humanos , Recém-Nascido , Anemia Hemolítica/genética , Anemia Hemolítica Congênita não Esferocítica/diagnóstico , Anemia Hemolítica Congênita não Esferocítica/genética , Sequenciamento de Nucleotídeos em Larga Escala , Mutação , Piruvato Quinase/genética
2.
Mol Genet Genomics ; 298(2): 427-439, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36598564

RESUMO

Hereditary Spherocytosis (HS) is a common cause of hemolytic anemia varying from mild to severe hemolysis due to defects in red cell membrane protein genes, namely ANK1, SPTB, SPTA1, SLC4A1, and EPB42. These genes are considerably very large spaning 40-50 exons making gene-by-gene analysis costly and laborious by conventional methods. In this study, we explored 26 HS patients harboring 21 ANK1 variants identified by next-generation sequencing (NGS), characteristics and spectrum of the detected ANK1variants were analyzed in this study. Clinically, all the HS patients showed moderate to severe transfusion-dependent hemolytic anemia, some requiring splenectomy. We identified 13 novel and 8 reported variants, mainly 9 frameshifts, 2 missense, 6 nonsense, and 4 splice site ANK1 variants, using NGS technology. Frameshifts were remarkably the most common variant type seen in Indian HS patients with ANK1 gene defects. We have also explored expression levels of red cell membrane ankyrin protein by flow cytometry in 14 HS patients with ANK1 gene defects and a significant reduction in ankyrin protein expression has been found. This report mainly illustrates the molecular and phenotypic heterogeneity of ANK1 variants causing HS in Indian patients. Ankyrin-1 mutations are a significant cause of loss of function in dominant HS in the Indian population. Comprehensive genetic and phenotypic evaluation assists in implementing the knowledge of genetic patterns and spectrum of ANK1 gene variants, providing molecular support for HS diagnosis.


Assuntos
Anquirinas , Esferocitose Hereditária , Humanos , Anquirinas/genética , Anquirinas/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Proteínas de Membrana/genética , Mutação , Esferocitose Hereditária/genética , Esferocitose Hereditária/diagnóstico , Esferocitose Hereditária/metabolismo
3.
Asian J Transfus Sci ; 16(1): 128-131, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36199403

RESUMO

A 27-year-old female patient who came for branchial cyst excision was found to have cyanosis and a saturation gap during preanesthetic check-up and hence she was referred to haematology for further workup. She had a Hb of 9 gm% with all other baseline tests as normal. Blood samples were sent for methaemoglobin estimation and related work up to the National Institute of Immunohematology (NIIH) Mumbai. She was diagnosed as a case of Methemoglobinemia with a methaemoglobin level of 68.7% with NADH cytochrome B5 reductase activity of 10.82 IU/g Hb. The drug of choice for treatment is Methylene blue and hence G6PD deficiency had to be ruled out prior to initiating therapy. She was found to have a concurrent existence of G6PD deficiency. The blood sample was further sent to NIIH for genetic confirmation. We avoided methylene blue and other precipitating factors that could trigger a haemolysis. She was further consulted by the Patient blood management team to optimize her erythropoiesis and avoid unnecessary transfusions. Anaesthetic consultation and planning were done to avoid drugs that could induce haemolysis. She was started on Vitamin C, Niacin, hematinic and advised to follow up after a month. She was symptomatically better. Cyanosis had reduced, and Hb improved to 12 gm%. She was taken up for surgery with all precautions. The surgery and the post-operative period were uneventful. She was discharged on postoperative day 4 with an advice to continue Vitamin C & Niacin and to follow-up in Haematology OPD after a month.

4.
BMC Med Genomics ; 14(1): 191, 2021 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-34321014

RESUMO

BACKGROUND: Adenylate kinase (AK) deficiency is a rare red cell enzymopathy associated with moderate to severe congenital nonspherocytic hemolytic anemia, along with mental and psychomotor retardation (in exceptional cases). Only ten mutations have been detected in the AK1 gene to date. In this study, we aimed to diagnose the unexplained issue of haemolytic anaemia and offer antenatal screening to the family. METHODS: Genomic DNA was isolated from whole blood by a standard protocol. Targeted next-generation sequencing (t-NGS) was performed to identify pathogenic variants in the patient and control samples. A chronic villus sample was collected at 11 weeks of gestation from the mother, and molecular testing was performed. Genetic confirmation was concluded by Sanger DNA sequencing. Bioinformatics tools predicted the pathogenicity of the variant. RESULTS: t-NGS revealed a homozygous variant (c.301C > A, p. Gln101Lys) in the AK1 gene in the patient and heterozygosity in the fetus and parental samples. The prediction tools SIFT, Polyphen2, Provean, PMUT, Mutation taster, and Mutation Assessor, confirmed the damaging effect of the variant on the AK1 protein structure CONCLUSION: We have presented a novel mutation in the AK1 gene (p. Gln101Lys) associated with adenylate kinase deficiency. It is the first prenatal diagnosis of AK deficiency in India, where heterogeneity is exceptionally high.


Assuntos
Anemia Hemolítica Congênita não Esferocítica
5.
J Clin Pathol ; 74(10): 620-624, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33361148

RESUMO

Hexokinase (EC 2.7.1.1, Adenosine Tri Phosphate (ATP): D-hexose-6-phosphotransferase) is a crucial regulatory enzyme of the glycolytic pathway (Embden-Meyerhof pathway). Hexokinase deficiency is associated with chronic non-spherocytic haemolytic anaemia (HA) with some exceptional cases showing psychomotor/mental retardation and fetus death. The proband is a four-and-half-year-old female child born of a four-degree consanguineous marriage hailing from South India with autosomal recessive congenital HA associated with developmental delay. She was well till 3 months of her age post an episode of diarrhoea when she was noted to be severely anaemic and requiring regular transfusions. The common causes of HA, haemoglobinopathies, red cell membranopathies and common red cell enzymopathies (G6PD, GPI, PK and P5N) were ruled out. Targeted analysis of whole exome sequencing (WES) using an insilico gene panel for hereditary anaemia was performed to identify pathogenic variants in the patient. Next-generation sequencing revealed a novel homozygous variant in hexokinase gene c.2714C>A (p. Thr905Lys) in exon-18. The pathogenic nature of the variant p. Thr905Lys in the HK1 gene was confirmed collectively by biochemical and molecular studies. Insilico analysis (PolyPhen-2, Provean, Mutation Taster) predicted the variant to be severe disease causing. Multiple sequence alignment demonstrated the conservation of p. Thr905 across the species. The impact of the mutation on the protein structure was studied by PyMOL and Swiss Protein databank viewer.


Assuntos
Anemia Hemolítica/genética , Deficiências do Desenvolvimento/genética , Hexoquinase/deficiência , Mutação de Sentido Incorreto , Adulto , Fatores Etários , Anemia Hemolítica/diagnóstico , Anemia Hemolítica/enzimologia , Desenvolvimento Infantil , Pré-Escolar , Análise Mutacional de DNA , Deficiências do Desenvolvimento/diagnóstico , Deficiências do Desenvolvimento/enzimologia , Feminino , Predisposição Genética para Doença , Hereditariedade , Hexoquinase/genética , Hexoquinase/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Homozigoto , Humanos , Índia , Masculino , Linhagem , Fenótipo , Índice de Gravidade de Doença , Sequenciamento do Exoma , Adulto Jovem
6.
Infect Genet Evol ; 86: 104597, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33069889

RESUMO

BACKGROUND: Glucose-6-phosphate dehydrogenase (G6PD) deficiency is one of the most common human erythroenzymopathy affecting around 10% of the world population. India is endemic for malaria and antimalarial drugs are known to induce haemolysis in G6PD deficient individuals. Here we report the prevalence as well as the molecular diversity of G6PD deficiency in geographical regions of India. METHODS AND RESULTS: A total of 20,896 individuals (11,838 males and 9058 females) were screened by DPIP dye decolorisation method followed by quantitation of G6PD enzyme activity on the suspected samples. Molecular analysis was undertaken in a total of 350 G6PD deficient individuals by PCR-RFLP and DNA sequencing. A structural characteristic of the novel variant was deduced by using DynaMut web-server. The prevalence rate of G6PD deficiency varied between 0.8 and 6.3% with an overall prevalence of 1.9%. A total of twelve mutations were identified. Of the total deleterious alleles detected G6PD Orissa (56.5%) was found to be the most predominant variant followed by G6PD Mediterranean (23.6%). G6PD Mediterranean, G6PD Kaiping and G6PD Mahidol were found to be severely deficient variant and 14.1% of them showed undetectable activity. A novel mutation c.544C➔G (R182G) in exon 6 was identified in one tribal male where substitution of arginine by glycine, likely causes the alteration in the alpha helix leading to disruption of secondary structure of the protein. CONCLUSION: There are large differences in the distribution of G6PD causal variants between Indian states, and this may have implications for the treatment in the malaria endemic areas.


Assuntos
Predisposição Genética para Doença , Deficiência de Glucosefosfato Desidrogenase/epidemiologia , Deficiência de Glucosefosfato Desidrogenase/genética , Glucosefosfato Desidrogenase/genética , Mutação , Alelos , Feminino , Genótipo , Humanos , Índia/epidemiologia , Masculino , Vigilância da População , Prevalência
7.
Ann Hematol ; 99(4): 715-727, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32112123

RESUMO

Hereditary xerocytosis (HX), also known as dehydrated stomatocytosis (DHSt) is a dominantly inherited genetic disorder exhibiting red cell membrane dehydration caused by the loss of the monovalent cation K+ and water. Variants in mechanosensitive Piezo ionic channels of the PIEZO1 gene are the primary cause of HX. We have utilized high throughput and highly precise next-generation sequencing (NGS) to make a diagnosis and examine the genotype-phenotype relationship in inflexible HX cases. Seven unrelated patients with unexplained hemolytic anemia were scrutinized with a panel probing 8000 genes related to congenital anemia. Targeted next-generation sequencing identified 8 missense variants in the PIEZO1 gene in 7 unrelated Indian patients. Three of the 8 variants are novel (c.1795G > C, c.2915G > A, c.7372 T > C) and the remaining five (c.4082A > G, c.6829C > A, c.7374C > G, c.7381G > A, c.7483_7488dup) are previously reported. The variants have been validated by Sanger sequencing. One patient with autosomal dominant mutation (c.7372 T > C) is associated with iron refractory iron deficiency anemia. Of the 7 patients, one has HX in combination with a novel homozygous variant (c.994G > A) in the PKLR gene causing PK deficiency resulting in severe clinical manifestations with phenotypic variability. In silico prediction using bioinformatics tools were used to study the possible damaging effects of the novel variants. Structural-functional analysis of the novel variants was investigated by molecular modeling software (PyMOL and Swiss PDB). These results encompass the heterogeneous behavior of mechano-sensitive Piezo1 protein observed in HX patients in India. Moreover, NGS imparted a subtle, economical, and quick tool for understanding the genetic cause of undiagnosed cases of congenital hemolytic anemia. NGS grants a potential technology integrating clinical history together with molecular report profiting in such patients and their families.


Assuntos
Anemia Hemolítica Congênita/genética , Hidropisia Fetal/genética , Canais Iônicos/genética , Mutação de Sentido Incorreto , Adolescente , Sequência de Aminoácidos , Anemia Hemolítica Congênita/sangue , Anemia Hemolítica Congênita/complicações , Anemia Hemolítica Congênita/etnologia , Anemia Ferropriva/genética , Animais , Criança , Pré-Escolar , Simulação por Computador , Feminino , Genes Dominantes , Estudos de Associação Genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Hidropisia Fetal/sangue , Hidropisia Fetal/etnologia , Índia , Canais Iônicos/química , Canais Iônicos/fisiologia , Sobrecarga de Ferro/etiologia , Masculino , Camundongos , Modelos Moleculares , Conformação Proteica , Piruvato Quinase/genética , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Relação Estrutura-Atividade
8.
Hum Mutat ; 41(4): 737-748, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31898843

RESUMO

NADH-cytochrome b5 reductase 3 deficiency is an important genetic cause of recessive congenital methemoglobinemia (RCM) and occurs worldwide in autosomal recessive inheritance. In this Mutation Update, we provide a comprehensive review of all the pathogenic mutations and their molecular pathology in RCM along with the molecular basis of RCM in 21 new patients from the Indian population, including four novel variants: c.103A>C (p.Thr35Pro), c.190C>G (p.Leu64Val), c.310G>T (p.Gly104Cys), and c.352C>T (p.His118Tyr). In this update, over 78 different variants have been described for RCM globally. Molecular modeling of all the variants reported in CYB5R3 justifies association with the varying severity of the disease. The majority of the mutations associated with the severe form with a neurological disorder (RCM Type 2) were associated with the FAD-binding domain of the protein while the rest were located in another domain of the protein (RCM Type 1).


Assuntos
Citocromo-B(5) Redutase/genética , Genes Recessivos , Estudos de Associação Genética , Predisposição Genética para Doença , Metemoglobinemia/congênito , Mutação , Alelos , Substituição de Aminoácidos , Citocromo-B(5) Redutase/química , Estudos de Associação Genética/métodos , Genótipo , Humanos , Metemoglobinemia/diagnóstico , Metemoglobinemia/genética , Modelos Moleculares , Fenótipo , Conformação Proteica , Relação Estrutura-Atividade
9.
Ann Hum Biol ; 47(1): 55-58, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31833391

RESUMO

Background: Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most common human erythroenzymopathy affecting more than 400 million people worldwide. G6PD deficiency was reported in India more than 50 years ago and the prevalence rate varies from 5.7% to 27.9% in different caste and tribal groups.Aim: To study the prevalence of, and the mutations causing, G6PD deficiency among the Siddis of Karnataka.Subjects and methods: A total of 755 individuals were screened using the DPIP dye decolorisation method and the deficiency was further confirmed by quantitative assay. Molecular characterisation was performed by PCR-RFLP method and DNA sequencing. Biochemical characterisation was performed as per WHO criteria.Results: Of the 755 individuals, 71 individuals (9.4%) were found to be G6PD deficient with an enzyme activity ranging from 0.02 to 3.83 IU/gm Hb. Mutational analysis could be performed on 49 G6PD deficient individuals and 45 (91.8%) of them showed the presence of the G6PD A- variant while the remaining 4 (8.2%) had the G6PD Kerala-Kalyan mutation. Microsatellite analysis in G6PD A- individuals showed the presence of 166/195 bp, AC/CTT alleles.Conclusions: G6PD deficiencies among the Siddis are predominantly due to G6PD A- mutation. Furthermore, biochemical parameters and the microsatellite repeat markers in the Siddi A- chromosome confirmed they are African descendants with Indian admixture.


Assuntos
Deficiência de Glucosefosfato Desidrogenase/epidemiologia , Glucosefosfato Desidrogenase/genética , Adolescente , Adulto , Idoso , Criança , Feminino , Deficiência de Glucosefosfato Desidrogenase/etnologia , Deficiência de Glucosefosfato Desidrogenase/genética , Humanos , Índia/epidemiologia , Masculino , Pessoa de Meia-Idade , Mutação , Prevalência , Adulto Jovem
10.
Cytometry B Clin Cytom ; 98(3): 238-249, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31750618

RESUMO

BACKGROUND: Red cell membranopathies refers to phenotypically and morphologically heterogeneous disorders. High throughput imaging flow cytometry (IFC) combines the speed, sensitivity, and phenotyping abilities of flow cytometry with the detailed imagery and functional insights of microscopy to produce high content image analysis with quantitative analysis. We have evaluated the applications of IFC to examine both the morphology as well as fluorescence signal intensity in red cell membranopathies. METHODS: Fluorescence intensity of eosin-5-maleimide (EMA) labeled red cells was measured for diagnosis of RBC membrane protein defect on Amnis ImageStreamX followed by Image analysis on IDEAS software to study features such as circularity and shape ratio. RESULTS: The hereditary spherocytosis (HS) group showed significantly decreased MFI (52,800 ± 9,100) than normal controls (81,100 ± 4,700) (p < .05) whereas non-HS showed 78,300 ± 9,900. The shape ratio of hereditary elliptocytosis (HE) was significantly higher (43.8%) than normal controls (14.6%). The circularity score is higher in HS (64.15%) than the normal controls (44.3%) whereas the circularity score was very less in HE (10%) due to the presence of elliptocytes. CONCLUSIONS: The advantages of the IFC over standard flow cytometry is its ability to provide high-content image analysis and measurement of parameters such as circularity and shape ratio allow discriminating red cell membranopathies (HS and HE) due to variations in shape and size. It could be a single, effective, and rapid IFC test for detection and differentiation of red cell membrane disorders in hematology laboratories where an IFC is available.


Assuntos
Membrana Celular/patologia , Eliptocitose Hereditária/diagnóstico , Citometria de Fluxo , Esferocitose Hereditária/diagnóstico , Adolescente , Adulto , Idoso , Membrana Celular/ultraestrutura , Criança , Pré-Escolar , Eliptocitose Hereditária/patologia , Eritrócitos/patologia , Eritrócitos/ultraestrutura , Feminino , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Esferocitose Hereditária/patologia , Adulto Jovem
11.
Indian J Pediatr ; 86(8): 692-699, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31030358

RESUMO

OBJECTIVES: Glucose-6-phosphate isomerase (GPI) deficiency is an autosomal recessive genetic disorder causing hereditary non-spherocytic hemolytic anemia (HNSHA) coupled with a neurological disorder. The aim of this study was to identify GPI genetic defects in a cohort of Indian patients with HNSHA coupled with neurological dysfunction. METHODS: Thirty-five patients were screened for GPI deficiency in the HNSHA patient group; some were having neurological dysfunction. Enzyme activity was measured by spectrophotometric method. The genetic study was done by single-stranded conformation polymorphism (SSCP) analysis, restriction fragment length polymorphism (RFLP) analysis by the restriction enzyme AciI for p.Arg347His (p.R347H) and confirmation by Sanger's sequencing. RESULTS: Out of 35 patients, 15 showed 35% to 70% loss of GPI activity, leading to neurological problems with HNSHA. Genetic analysis of PCR products of exon 12 of the GPI gene showed altered mobility on SSCP gel. Sanger's sequencing revealed a homozygous c1040G > A mutation predicting a p.Arg347His replacement which abolishes AciI restriction site. The molecular modeling analysis suggests p.Arg347 is involved in dimerization of the enzyme. Also, this mutation generates a more labile enzyme which alters its three-dimensional structure and function. CONCLUSIONS: This report describes the high prevalence of p.Arg347His pathogenic variant identified in Indian GPI deficient patients with hemolytic anemia and neuromuscular impairment. It suggests that neuromuscular impairment with hemolytic anemia cases could be investigated for p.Arg347His pathogenic variant causing GPI deficiency because of neuroleukin activity present in the GPI monomer which has neuroleukin action at the same active site and generates neuromuscular problems as well as hemolytic anemia.


Assuntos
Anemia Hemolítica Congênita não Esferocítica/enzimologia , Anemia Hemolítica Congênita não Esferocítica/genética , Glucose-6-Fosfato Isomerase/genética , Deficiência Intelectual/enzimologia , Deficiência Intelectual/genética , Doenças Neuromusculares/enzimologia , Doenças Neuromusculares/genética , Adolescente , Criança , Pré-Escolar , Feminino , Humanos , Índia , Lactente , Masculino , Mutação de Sentido Incorreto , Prevalência
12.
J Clin Pathol ; 72(6): 393-398, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30918013

RESUMO

Adenylate kinase (AK) deficiency is a rare erythroenzymopathy associated with hereditary nonspherocytic haemolytic anaemia along with mental/psychomotor retardation in few cases. Diagnosis of AK deficiency depends on the decreased level of enzyme activity in red cell and identification of a mutation in the AK1 gene. Until, only eight mutations causing AK deficiency have been reported in the literature. We are reporting two novel missense mutation (c.71A > G and c.413G > A) detected in the AK1 gene by next-generation sequencing (NGS) in a 6-year-old male child from India. Red cell AK enzyme activity was found to be 30% normal. We have screened a total of 32 family members of the patient and showed reduced red cell enzyme activity and confirm mutations by Sanger's sequencing. On the basis of Sanger sequencing, we suggest that the proband has inherited a mutation in AK1 gene exon 4 c.71A > G (p.Gln24Arg) from paternal family and exon 6 c.413G > A (p.Arg138His) from maternal family. Bioinformatics tools, such as SIFT, Polymorphism Phenotyping v.2, Mutation Taster, MutPred, also confirmed the deleterious effect of both the mutations. Molecular modelling suggests that the structural changes induced by p.Gln24Arg and p.Arg138His are pathogenic variants having a direct impact on the structural arrangement of the region close to the active site of the enzyme. In conclusion, NGS will be the best solution for diagnosis of very rare disorders leading to better management of the disease. This is the first report of the red cell AK deficiency from the Indian population.


Assuntos
Adenilato Quinase/genética , Anemia Hemolítica Congênita não Esferocítica/genética , Eritrócitos/enzimologia , Mutação de Sentido Incorreto , Adenilato Quinase/sangue , Adenilato Quinase/química , Adenilato Quinase/deficiência , Adulto , Anemia Hemolítica Congênita não Esferocítica/sangue , Anemia Hemolítica Congênita não Esferocítica/diagnóstico , Anemia Hemolítica Congênita não Esferocítica/enzimologia , Criança , Análise Mutacional de DNA/métodos , Feminino , Predisposição Genética para Doença , Hereditariedade , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Índia , Masculino , Modelos Moleculares , Linhagem , Fenótipo , Conformação Proteica , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA