Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Phys Chem Lett ; 9(10): 2492-2497, 2018 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-29688728

RESUMO

We utilize proton-coupled electron transfer in hydrogen storage molecules to unlock a rechargeable battery chemistry based on the cleanest chemical energy carrier molecule, hydrogen. Electrochemical, spectroscopic, and spectroelectrochemical analyses evidence the participation of protons during charge-discharge chemistry and extended cycling. In an era of anthropogenic global climate change and paramount pollution, a battery concept based on a virtually nonpolluting energy carrier molecule demonstrates distinct progress in the sustainable energy landscape.

2.
J Phys Chem Lett ; 8(15): 3523-3529, 2017 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-28686441

RESUMO

Molecular oxygen, the conventional electron acceptor in fuel cells poses challenges specific to direct alcohol fuel cells (DAFCs). Due to the coupling of alcohol dehydrogenation with the scission of oxygen on the positive electrode during the alcohol crossover, the benchmark Pt-based air cathode experiences severe competition and depolarization losses. The necessity of heavy precious metal loading with domains for alcohol tolerance in the state of the art DAFC cathode is a direct consequence of this. Although efforts are dedicated to selectively cleave oxygen, the root of the problem being the inner sphere nature of either half-cell chemistry is often overlooked. Using an outer sphere electron acceptor that does not form a bond with the cathode during redox energy transformation, we effectively decoupled the interfacial chemistry from parasitic chemistry leading to a DAFC driven by alcohol passive carbon nanoparticles, with performance metrics ∼8 times higher than Pt-based DAFC-O2.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA