Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nature ; 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38693261

RESUMO

The gut microbiota operates at the interface of host-environment interactions to influence human homoeostasis and metabolic networks1-4. Environmental factors that unbalance gut microbial ecosystems can therefore shape physiological and disease-associated responses across somatic tissues5-9. However, the systemic impact of the gut microbiome on the germline-and consequently on the F1 offspring it gives rise to-is unexplored10. Here we show that the gut microbiota act as a key interface between paternal preconception environment and intergenerational health in mice. Perturbations to the gut microbiota of prospective fathers increase the probability of their offspring presenting with low birth weight, severe growth restriction and premature mortality. Transmission of disease risk occurs via the germline and is provoked by pervasive gut microbiome perturbations, including non-absorbable antibiotics or osmotic laxatives, but is rescued by restoring the paternal microbiota before conception. This effect is linked with a dynamic response to induced dysbiosis in the male reproductive system, including impaired leptin signalling, altered testicular metabolite profiles and remapped small RNA payloads in sperm. As a result, dysbiotic fathers trigger an elevated risk of in utero placental insufficiency, revealing a placental origin of mammalian intergenerational effects. Our study defines a regulatory 'gut-germline axis' in males, which is sensitive to environmental exposures and programmes offspring fitness through impacting placenta function.

2.
Nature ; 597(7877): 533-538, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34497420

RESUMO

Bacteria in the gut can modulate the availability and efficacy of therapeutic drugs. However, the systematic mapping of the interactions between drugs and bacteria has only started recently1 and the main underlying mechanism proposed is the chemical transformation of drugs by microorganisms (biotransformation). Here we investigated the depletion of 15 structurally diverse drugs by 25 representative strains of gut bacteria. This revealed 70 bacteria-drug interactions, 29 of which had not to our knowledge been reported before. Over half of the new interactions can be ascribed to bioaccumulation; that is, bacteria storing the drug intracellularly without chemically modifying it, and in most cases without the growth of the bacteria being affected. As a case in point, we studied the molecular basis of bioaccumulation of the widely used antidepressant duloxetine by using click chemistry, thermal proteome profiling and metabolomics. We find that duloxetine binds to several metabolic enzymes and changes the metabolite secretion of the respective bacteria. When tested in a defined microbial community of accumulators and non-accumulators, duloxetine markedly altered the composition of the community through metabolic cross-feeding. We further validated our findings in an animal model, showing that bioaccumulating bacteria attenuate the behavioural response of Caenorhabditis elegans to duloxetine. Together, our results show that bioaccumulation by gut bacteria may be a common mechanism that alters drug availability and bacterial metabolism, with implications for microbiota composition, pharmacokinetics, side effects and drug responses, probably in an individual manner.


Assuntos
Bactérias/metabolismo , Bioacumulação , Cloridrato de Duloxetina/metabolismo , Microbioma Gastrointestinal/fisiologia , Animais , Antidepressivos/metabolismo , Antidepressivos/farmacocinética , Caenorhabditis elegans/metabolismo , Células/metabolismo , Química Click , Cloridrato de Duloxetina/efeitos adversos , Cloridrato de Duloxetina/farmacocinética , Humanos , Metabolômica , Modelos Animais , Proteômica , Reprodutibilidade dos Testes
3.
Mol Syst Biol ; 17(8): e10189, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34370382

RESUMO

Adaptive laboratory evolution has proven highly effective for obtaining microorganisms with enhanced capabilities. Yet, this method is inherently restricted to the traits that are positively linked to cell fitness, such as nutrient utilization. Here, we introduce coevolution of obligatory mutualistic communities for improving secretion of fitness-costly metabolites through natural selection. In this strategy, metabolic cross-feeding connects secretion of the target metabolite, despite its cost to the secretor, to the survival and proliferation of the entire community. We thus co-evolved wild-type lactic acid bacteria and engineered auxotrophic Saccharomyces cerevisiae in a synthetic growth medium leading to bacterial isolates with enhanced secretion of two B-group vitamins, viz., riboflavin and folate. The increased production was specific to the targeted vitamin, and evident also in milk, a more complex nutrient environment that naturally contains vitamins. Genomic, proteomic and metabolomic analyses of the evolved lactic acid bacteria, in combination with flux balance analysis, showed altered metabolic regulation towards increased supply of the vitamin precursors. Together, our findings demonstrate how microbial metabolism adapts to mutualistic lifestyle through enhanced metabolite exchange.


Assuntos
Laboratórios , Proteômica , Técnicas de Cocultura , Saccharomyces cerevisiae/genética , Simbiose/genética
4.
BMC Microbiol ; 21(1): 24, 2021 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-33430766

RESUMO

BACKGROUND: Berberine (BBR) is a plant-based nutraceutical that has been used for millennia to treat diarrheal infections and in contemporary medicine to improve patient lipid profiles. Reduction in lipids, particularly cholesterol, is achieved partly through up-regulation of bile acid synthesis and excretion into the gastrointestinal tract (GI). The efficacy of BBR is also thought to be dependent on structural and functional alterations of the gut microbiome. However, knowledge of the effects of BBR on gut microbiome communities is currently lacking. Distinguishing indirect effects of BBR on bacteria through altered bile acid profiles is particularly important in understanding how dietary nutraceuticals alter the microbiome. RESULTS: Germfree mice were colonized with a defined minimal gut bacterial consortium capable of functional bile acid metabolism (Bacteroides vulgatus, Bacteroides uniformis, Parabacteroides distasonis, Bilophila wadsworthia, Clostridium hylemonae, Clostridium hiranonis, Blautia producta; B4PC2). Multi-omics (bile acid metabolomics, 16S rDNA sequencing, cecal metatranscriptomics) were performed in order to provide a simple in vivo model from which to identify network-based correlations between bile acids and bacterial transcripts in the presence and absence of dietary BBR. Significant alterations in network topology and connectivity in function were observed, despite similarity in gut microbial alpha diversity (P = 0.30) and beta-diversity (P = 0.123) between control and BBR treatment. BBR increased cecal bile acid concentrations, (P < 0.05), most notably deoxycholic acid (DCA) (P < 0.001). Overall, analysis of transcriptomes and correlation networks indicates both bacterial species-specific responses to BBR, as well as functional commonalities among species, such as up-regulation of Na+/H+ antiporter, cell wall synthesis/repair, carbohydrate metabolism and amino acid metabolism. Bile acid concentrations in the GI tract increased significantly during BBR treatment and developed extensive correlation networks with expressed genes in the B4PC2 community. CONCLUSIONS: This work has important implications for interpreting the effects of BBR on structure and function of the complex gut microbiome, which may lead to targeted pharmaceutical interventions aimed to achieve the positive physiological effects previously observed with BBR supplementation.


Assuntos
Bactérias/classificação , Proteínas de Bactérias/genética , Berberina/administração & dosagem , Ácidos e Sais Biliares/metabolismo , RNA Ribossômico 16S/genética , Animais , Bactérias/efeitos dos fármacos , Bactérias/genética , Bactérias/isolamento & purificação , Berberina/farmacologia , DNA Bacteriano/genética , DNA Ribossômico/genética , Feminino , Microbioma Gastrointestinal/efeitos dos fármacos , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Masculino , Metabolômica , Camundongos , Análise de Sequência de RNA , Especificidade da Espécie
5.
Sci Total Environ ; 749: 142218, 2020 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-33370912

RESUMO

Due to their rapid growth rates, high lipid productivity, and ability to synthesize value-added products, microalgae are considered as the potential biofuel feedstocks. However, among the several bottlenecks that are hindering the commercialization of microalgal biofuel synthesis, the issue of high water consumption is the least explored. This analysis, therefore, examines the factors that decide water use for the production of microalgae biofuel. Microalgae biodiesel water footprint varies from 3.5 to 3726 kg of water per kg of biodiesel. The study further investigates the cause for large variability in the estimation of the water footprint for microalgae fuel. Various strategies, including the reuse of harvested water, the use of high density cultivation that could be adopted for low water consumption in microalgal biofuel production are discussed. Specifically, the review identified a reciprocal relationship between biomass productivity and water footprint. On the basis of which the review emphasizes the significance of high density cultivation, which can be inexpensive and feasible relative to other water-saving techniques. With the setback of water scarcity due to the rapid industrialization in developing countries, the implementation of the cultivation system with a focus on minimizing the water consumption is inevitable for a successful large scale microalgal biofuel production.


Assuntos
Microalgas , Biocombustíveis , Biomassa , Água
6.
Nat Commun ; 11(1): 6389, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33319778

RESUMO

Our knowledge about the gut microbiota of pigs is still scarce, despite the importance of these animals for biomedical research and agriculture. Here, we present a collection of cultured bacteria from the pig gut, including 110 species across 40 families and nine phyla. We provide taxonomic descriptions for 22 novel species and 16 genera. Meta-analysis of 16S rRNA amplicon sequence data and metagenome-assembled genomes reveal prevalent and pig-specific species within Lactobacillus, Streptococcus, Clostridium, Desulfovibrio, Enterococcus, Fusobacterium, and several new genera described in this study. Potentially interesting functions discovered in these organisms include a fucosyltransferase encoded in the genome of the novel species Clostridium porci, and prevalent gene clusters for biosynthesis of sactipeptide-like peptides. Many strains deconjugate primary bile acids in in vitro assays, and a Clostridium scindens strain produces secondary bile acids via dehydroxylation. In addition, cells of the novel species Bullifex porci are coccoidal or spherical under the culture conditions tested, in contrast with the usual helical shape of other members of the family Spirochaetaceae. The strain collection, called 'Pig intestinal bacterial collection' (PiBAC), is publicly available at www.dsmz.de/pibac and opens new avenues for functional studies of the pig gut microbiota.


Assuntos
Bactérias/classificação , Bactérias/isolamento & purificação , Microbioma Gastrointestinal , Intestinos/microbiologia , Filogenia , Suínos/microbiologia , Idoso de 80 Anos ou mais , Animais , Bactérias/genética , Bactérias/metabolismo , Ácidos e Sais Biliares/metabolismo , Biodiversidade , Clostridium/classificação , Clostridium/genética , Clostridium/isolamento & purificação , Fezes/microbiologia , Feminino , Microbioma Gastrointestinal/genética , Genes Bacterianos/genética , Especificidade de Hospedeiro , Humanos , Masculino , Metagenoma , Família Multigênica , RNA Ribossômico 16S
7.
Environ Sci Pollut Res Int ; 27(15): 17571-17586, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31512119

RESUMO

The cement industry generates a substantial amount of gaseous pollutants that cannot be treated efficiently and economically using standard techniques. Microalgae, a promising bioremediation and biodegradation agent used as feedstock for biofuel production, can be used for the biotreatment of cement flue gas. In specific, components of cement flue gas such as carbon dioxide, nitrogen, and sulfur oxides are shown to serve as nutrients for microalgae. Microalgae also have the capacity to sequestrate heavy metals present in cement kiln dust, adding further benefits. This work provides an extensive overview of multiple approaches taken in the inclusion of microalgae biofuel production in the cement sector. In addition, factors influencing the production of microalgal biomass are also described in such an integrated plant. In addition, process limitations such as the adverse impact of flue gas on medium pH, exhaust gas toxicity, and efficient delivery of carbon dioxide to media are also discussed. Finally, the article concludes by proposing the future potential for incorporating the microalgae biofuel plant into the cement sector.


Assuntos
Microalgas , Biocombustíveis , Biomassa , Dióxido de Carbono , Gases
8.
Gut Microbes ; 11(3): 381-404, 2020 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-31177942

RESUMO

The formation of secondary bile acids by gut microbes is a current topic of considerable biomedical interest. However, a detailed understanding of the biology of anaerobic bacteria in the genus Clostridium that are capable of generating secondary bile acids is lacking. We therefore sought to determine the transcriptional responses of two prominent secondary bile acid producing bacteria, Clostridium hylemonae and Clostridium hiranonis to bile salts (in vitro) and the cecal environment of gnotobiotic mice. The genomes of C. hylemonae DSM 15053 and C. hiranonis DSM 13275 were closed, and found to encode 3,647 genes (3,584 protein-coding) and 2,363 predicted genes (of which 2,239 are protein-coding), respectively, and 1,035 orthologs were shared between C. hylemonae and C. hiranonis. RNA-Seq analysis was performed in growth medium alone, and in the presence of cholic acid (CA) and deoxycholic acid (DCA). Growth with CA resulted in differential expression (>0.58 log2FC; FDR < 0.05) of 197 genes in C. hiranonis and 118 genes in C. hylemonae. The bile acid-inducible operons (bai) from each organism were highly upregulated in the presence of CA but not DCA. We then colonized germ-free mice with human gut bacterial isolates capable of metabolizing taurine-conjugated bile acids. This consortium included bile salt hydrolase-expressing Bacteroides uniformis ATCC 8492, Bacteroides vulgatus ATCC 8482, Parabacteroides distasonis DSM 20701, as well as taurine-respiring Bilophila wadsworthia DSM 11045, and deoxycholic/lithocholic acid generating Clostridium hylemonae DSM 15053 and Clostridium hiranonis DSM 13275. Butyrate and iso-bile acid-forming Blautia producta ATCC 27340 was also included. The Bacteroidetes made up 84.71% of 16S rDNA cecal reads, B. wadsworthia, constituted 14.7%, and the clostridia made up <.75% of 16S rDNA cecal reads. Bile acid metabolomics of the cecum, serum, and liver indicate that the synthetic community were capable of functional bile salt deconjugation, oxidation/isomerization, and 7α-dehydroxylation of bile acids. Cecal metatranscriptome analysis revealed expression of genes involved in metabolism of taurine-conjugated bile acids. The in vivo transcriptomes of C. hylemonae and C. hiranonis suggest fermentation of simple sugars and utilization of amino acids glycine and proline as electron acceptors. Genes predicted to be involved in trimethylamine (TMA) formation were also expressed.


Assuntos
Bactérias Anaeróbias/genética , Bactérias Anaeróbias/metabolismo , Ácidos e Sais Biliares/metabolismo , Ceco/microbiologia , Metaboloma , Transcriptoma , Animais , Bacteroides/genética , Bacteroides/metabolismo , Bilophila/genética , Bilophila/metabolismo , Ácidos Cólicos/metabolismo , Clostridium/genética , Clostridium/metabolismo , Regulação Bacteriana da Expressão Gênica , Genoma Bacteriano , Genômica , Vida Livre de Germes , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Microbiota , Óperon , RNA-Seq , Regulação para Cima
9.
J Steroid Biochem Mol Biol ; 199: 105567, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31870912

RESUMO

The adrenal gland has traditionally been viewed as a source of "weak androgens"; however, emerging evidence indicates 11-oxy-androgens of adrenal origin are metabolized in peripheral tissues to potent androgens. Also emerging is the role of gut bacteria in the conversion of C21 glucocorticoids to 11-oxygenated C19 androgens. Clostridium scindens ATCC 35,704 is a gut microbe capable of converting cortisol into 11-oxy-androgens by cleaving the side-chain. The desA and desB genes encode steroid-17,20-desmolase. Our prior study indicated that the urinary tract bacterium, Propionimicrobium lymphophilum ACS-093-V-SCH5 encodes desAB and converts cortisol to 11ß-hydroxyandrostenedione. We wanted to determine how widespread this function occurs in the human microbiome. Phylogenetic and sequence similarity network analyses indicated that the steroid-17,20-desmolase pathway is taxonomically rare and located in gut and urogenital microbiomes. Two microbes from each of these niches, C. scindens and Propionimicrobium lymphophilum, respectively, were screened for activity against endogenous (cortisol, cortisone, and allotetrahydrocortisol) and exogenous (prednisone, prednisolone, dexamethasone, and 9-fluorocortisol) glucocorticoids. LC/MS analysis showed that both microbes were able to side-chain cleave all glucocorticoids, forming 11-oxy-androgens. Pure recombinant DesAB from C. scindens showed the highest activity against prednisone, a commonly prescribed glucocorticoid. In addition, 0.1 nM 1,4-androstadiene-3,11,17-trione, bacterial side-chain cleavage product of prednisone, showed significant proliferation relative to vehicle in androgen-dependent growth LNCaP prostate cancer cells after 24 h (2.3 fold; P <  0.01) and 72 h (1.6 fold; P < 0.01). Taken together, DesAB-expressing microbes may be an overlooked source of androgens in the body, potentially contributing to various disease states, such as prostate cancer.


Assuntos
Androstadienos/metabolismo , Glucocorticoides/metabolismo , Neoplasias da Próstata/metabolismo , Esteroide 17-alfa-Hidroxilase/metabolismo , Glândulas Suprarrenais/metabolismo , Androgênios/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Clostridiales/enzimologia , Humanos , Hidrocortisona/metabolismo , Masculino , Redes e Vias Metabólicas/genética , Filogenia , Prednisolona/metabolismo , Prednisona/metabolismo , Propionibacteriaceae/enzimologia , Neoplasias da Próstata/enzimologia , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Esteroide 17-alfa-Hidroxilase/genética
10.
J Biol Chem ; 294(32): 12040-12053, 2019 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-31209107

RESUMO

Anaerobic bacteria inhabiting the human gastrointestinal tract have evolved various enzymes that modify host-derived steroids. The bacterial steroid-17,20-desmolase pathway cleaves the cortisol side chain, forming pro-androgens predicted to impact host physiology. Bacterial 20ß-hydroxysteroid dehydrogenase (20ß-HSDH) regulates cortisol side-chain cleavage by reducing the C-20 carboxyl group on cortisol, yielding 20ß-dihydrocortisol. Recently, the gene encoding 20ß-HSDH in Butyricicoccus desmolans ATCC 43058 was reported, and a nonredundant protein search yielded a candidate 20ß-HSDH gene in Bifidobacterium adolescentis strain L2-32. B. adolescentis 20ß-HSDH could regulate cortisol side-chain cleavage by limiting pro-androgen formation in bacteria such as Clostridium scindens and 21-dehydroxylation by Eggerthella lenta Here, the putative B. adolescentis 20ß-HSDH was cloned, overexpressed, and purified. 20ß-HSDH activity was confirmed through whole-cell and pure enzymatic assays, and it is specific for cortisol. Next, we solved the structures of recombinant 20ß-HSDH in both the apo- and holo-forms at 2.0-2.2 Å resolutions, revealing close overlap except for rearrangements near the active site. Interestingly, the structures contain a large, flexible N-terminal region that was investigated by gel-filtration chromatography and CD spectroscopy. This extended N terminus is important for protein stability because deletions of varying lengths caused structural changes and reduced enzymatic activity. A nonconserved extended N terminus was also observed in several short-chain dehydrogenase/reductase family members. B. adolescentis strains capable of 20ß-HSDH activity could alter glucocorticoid metabolism in the gut and thereby serve as potential probiotics for the management of androgen-dependent diseases.


Assuntos
Proteínas de Bactérias/metabolismo , Bifidobacterium adolescentis/enzimologia , Hidroxiesteroide Desidrogenases/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Cristalografia por Raios X , Hidrocortisona/química , Hidrocortisona/metabolismo , Hidroxiesteroide Desidrogenases/química , Hidroxiesteroide Desidrogenases/genética , Cinética , Mutagênese Sítio-Dirigida , NAD/química , NAD/metabolismo , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Especificidade por Substrato
11.
Appl Environ Microbiol ; 85(7)2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30737348

RESUMO

In the human gut, Clostridium scindens ATCC 35704 is a predominant bacterium and one of the major bile acid 7α-dehydroxylating anaerobes. While this organism is well-studied relative to bile acid metabolism, little is known about the basic nutrition and physiology of C. scindens ATCC 35704. To determine the amino acid and vitamin requirements of C. scindens, the leave-one-out (one amino acid group or vitamin) technique was used to eliminate the nonessential amino acids and vitamins. With this approach, the amino acid tryptophan and three vitamins (riboflavin, pantothenate, and pyridoxal) were found to be required for the growth of C. scindens In the newly developed defined medium, C. scindens fermented glucose mainly to ethanol, acetate, formate, and H2. The genome of C. scindens ATCC 35704 was completed through PacBio sequencing. Pathway analysis of the genome sequence coupled with transcriptome sequencing (RNA-Seq) under defined culture conditions revealed consistency with the growth requirements and end products of glucose metabolism. Induction with bile acids revealed complex and differential responses to cholic acid and deoxycholic acid, including the expression of potentially novel bile acid-inducible genes involved in cholic acid metabolism. Responses to toxic deoxycholic acid included expression of genes predicted to be involved in DNA repair, oxidative stress, cell wall maintenance/metabolism, chaperone synthesis, and downregulation of one-third of the genome. These analyses provide valuable insight into the overall biology of C. scindens which may be important in treatment of disease associated with increased colonic secondary bile acids.IMPORTANCEC. scindens is one of a few identified gut bacterial species capable of converting host cholic acid into disease-associated secondary bile acids such as deoxycholic acid. The current work represents an important advance in understanding the nutritional requirements and response to bile acids of the medically important human gut bacterium, C. scindens ATCC 35704. A defined medium has been developed which will further the understanding of bile acid metabolism in the context of growth substrates, cofactors, and other metabolites in the vertebrate gut. Analysis of the complete genome supports the nutritional requirements reported here. Genome-wide transcriptomic analysis of gene expression in the presence of cholic acid and deoxycholic acid provides a unique insight into the complex response of C. scindens ATCC 35704 to primary and secondary bile acids. Also revealed are genes with the potential to function in bile acid transport and metabolism.


Assuntos
Ácidos e Sais Biliares/metabolismo , Clostridiales/genética , Clostridiales/metabolismo , Microbioma Gastrointestinal , Necessidades Nutricionais , Sequenciamento Completo do Genoma , Aminoácidos/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Metabolismo dos Carboidratos , Ácido Cólico/metabolismo , Clostridiales/crescimento & desenvolvimento , Meios de Cultura , Reparo do DNA , DNA Bacteriano/genética , DNA Bacteriano/isolamento & purificação , Ácido Desoxicólico/metabolismo , Fermentação , Humanos , Hidroxilação , Análise de Sequência de RNA
12.
Br J Nutr ; 120(6): 711-720, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30064535

RESUMO

Because obesity is associated with many co-morbidities, including diabetes mellitus, this study evaluated the second-meal effect of a commercial prebiotic, inulin-type fructans, and the effects of the prebiotic on faecal microbiota, metabolites and bile acids (BA). Nine overweight beagles were used in a replicated 3×3 Latin square design to test a non-prebiotic control (cellulose) against a low (equivalent to 0·5 % diet) and high dose (equivalent to 1·0 % diet) of prebiotic over 14-d treatments. All dogs were fed the same diet twice daily, with treatments provided orally via gelatin capsules before meals. On days 13 or 14 of each period, fresh faecal samples were collected, dogs were fed at 08.00 hours and then challenged with 1 g/kg body weight of maltodextrin in place of the 16.00 hours meal. Repeated blood samples were analysed for glucose and hormone concentrations to determine postprandial incremental AUC (IAUC) data. Baseline glucose, insulin and active glucagon-like peptide-1 levels were similar between all groups (P>0·10). Glucose and insulin IAUC after glucose challenge appeared lower following the high dose, but did not reach statistical relevance. Prebiotic intervention resulted in an increase in relative abundance of some Firmicutes and a decrease in the relative abundance of some Proteobacteria. Individual and total faecal SCFA were significantly increased (P<0·05) following prebiotic supplementation. Total concentration of excreted faecal BA tended to increase in dogs fed the prebiotic (P=0·06). Our results indicate that higher doses of inulin-type prebiotics may serve as modulators of gut microbiota, metabolites and BA pool in overweight dogs.


Assuntos
Colo , Fezes , Frutanos/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Inulina/farmacologia , Obesidade , Prebióticos , Animais , Área Sob a Curva , Ácidos e Sais Biliares/metabolismo , Glicemia/metabolismo , Colo/metabolismo , Colo/microbiologia , Cães , Ácidos Graxos Voláteis/metabolismo , Fezes/química , Fezes/microbiologia , Feminino , Firmicutes/crescimento & desenvolvimento , Frutanos/uso terapêutico , Peptídeo 1 Semelhante ao Glucagon/sangue , Insulina/sangue , Inulina/uso terapêutico , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Obesidade/microbiologia , Obesidade/veterinária , Período Pós-Prandial , Proteobactérias/crescimento & desenvolvimento
13.
Gut Microbes ; 9(6): 523-539, 2018 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-29617190

RESUMO

Strains of Eggerthella lenta are capable of oxidation-reduction reactions capable of oxidizing and epimerizing bile acid hydroxyl groups. Several genes encoding these enzymes, known as hydroxysteroid dehydrogenases (HSDH) have yet to be identified. It is also uncertain whether the products of E. lenta bile acid metabolism are further metabolized by other members of the gut microbiota. We characterized a novel human fecal isolate identified as E. lenta strain C592. The complete genome of E. lenta strain C592 was sequenced and comparative genomics with the type strain (DSM 2243) revealed high conservation, but some notable differences. E. lenta strain C592 falls into group III, possessing 3α, 3ß, 7α, and 12α-hydroxysteroid dehydrogenase (HSDH) activity, as determined by mass spectrometry of thin layer chromatography (TLC) separated metabolites of primary and secondary bile acids. Incubation of E. lenta oxo-bile acid and iso-bile acid metabolites with whole-cells of the high-activity bile acid 7α-dehydroxylating bacterium, Clostridium scindens VPI 12708, resulted in minimal conversion of oxo-derivatives to lithocholic acid (LCA). Further, Iso-chenodeoxycholic acid (iso-CDCA; 3ß,7α-dihydroxy-5ß-cholan-24-oic acid) was not metabolized by C. scindens. We then located a gene encoding a novel 12α-HSDH in E. lenta DSM 2243, also encoded by strain C592, and the recombinant purified enzyme was characterized and substrate-specificity determined. Genomic analysis revealed genes encoding an Rnf complex (rnfABCDEG), an energy conserving hydrogenase (echABCDEF) complex, as well as what appears to be a complete Wood-Ljungdahl pathway. Our prediction that by changing the gas atmosphere from nitrogen to hydrogen, bile acid oxidation would be inhibited, was confirmed. These results suggest that E. lenta is an important bile acid metabolizing gut microbe and that the gas atmosphere may be an important and overlooked regulator of bile acid metabolism in the gut.


Assuntos
Actinobacteria/metabolismo , Ácidos e Sais Biliares/metabolismo , Hidroxiesteroide Desidrogenases/metabolismo , Actinobacteria/classificação , Actinobacteria/enzimologia , Actinobacteria/genética , Clostridium/metabolismo , Fezes/microbiologia , Genoma Bacteriano/genética , Humanos , Hidrogênio , Hidroxiesteroide Desidrogenases/química , Hidroxiesteroide Desidrogenases/genética , Hidroxiesteroide Desidrogenases/isolamento & purificação , Redes e Vias Metabólicas/genética , Nitrogênio/metabolismo , Oxirredução , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Especificidade por Substrato
14.
Appl Environ Microbiol ; 84(10)2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29549099

RESUMO

Bile acids are important cholesterol-derived nutrient signaling hormones, synthesized in the liver, that act as detergents to solubilize dietary lipids. Bile acid 7α-dehydroxylating gut bacteria generate the toxic bile acids deoxycholic acid and lithocholic acid from host bile acids. The ability of these bacteria to remove the 7-hydroxyl group is partially dependent on 7α-hydroxysteroid dehydrogenase (HSDH) activity, which reduces 7-oxo-bile acids generated by other gut bacteria. 3α-HSDH has an important enzymatic activity in the bile acid 7α-dehydroxylation pathway. 12α-HSDH activity has been reported for the low-activity bile acid 7α-dehydroxylating bacterium Clostridium leptum; however, this activity has not been reported for high-activity bile acid 7α-dehydroxylating bacteria, such as Clostridium scindens, Clostridium hylemonae, and Clostridium hiranonis Here, we demonstrate that these strains express bile acid 12α-HSDH. The recombinant enzymes were characterized from each species and shown to preferentially reduce 12-oxolithocholic acid to deoxycholic acid, with low activity against 12-oxochenodeoxycholic acid and reduced activity when bile acids were conjugated to taurine or glycine. Phylogenetic analysis suggests that 12α-HSDH is widespread among Firmicutes, Actinobacteria in the Coriobacteriaceae family, and human gut ArchaeaIMPORTANCE 12α-HSDH activity has been established in the medically important bile acid 7α-dehydroxylating bacteria C. scindens, C. hiranonis, and C. hylemonae Experiments with recombinant 12α-HSDHs from these strains are consistent with culture-based experiments that show a robust preference for 12-oxolithocholic acid over 12-oxochenodeoxycholic acid. Phylogenetic analysis identified novel members of the gut microbiome encoding 12α-HSDH. Future reengineering of 12α-HSDH enzymes to preferentially oxidize cholic acid may provide a means to industrially produce the therapeutic bile acid ursodeoxycholic acid. In addition, a cholic acid-specific 12α-HSDH expressed in the gut may be useful for the reduction in deoxycholic acid concentration, a bile acid implicated in cancers of the gastrointestinal (GI) tract.


Assuntos
Bactérias/enzimologia , Proteínas de Bactérias/metabolismo , Ácidos e Sais Biliares/metabolismo , Microbioma Gastrointestinal , Trato Gastrointestinal/microbiologia , Hidroxiesteroide Desidrogenases/metabolismo , Cetoácidos/metabolismo , Sequência de Aminoácidos , Bactérias/classificação , Bactérias/isolamento & purificação , Bactérias/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Ácidos e Sais Biliares/química , Trato Gastrointestinal/metabolismo , Humanos , Hidroxilação , Hidroxiesteroide Desidrogenases/química , Hidroxiesteroide Desidrogenases/genética , Cetoácidos/química , Filogenia , Alinhamento de Sequência
15.
J Lipid Res ; 59(6): 1005-1014, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29572237

RESUMO

Clostridium scindens is a gut microbe capable of removing the side-chain of cortisol, forming 11ß-hydro-xyandrostenedione. A cortisol-inducible operon (desABCD) was previously identified in C. scindens ATCC 35704 by RNA-Seq. The desC gene was shown to encode a cortisol 20α-hydroxysteroid dehydrogenase (20α-HSDH). The desD encodes a protein annotated as a member of the major facilitator family, predicted to function as a cortisol transporter. The desA and desB genes are annotated as N-terminal and C-terminal transketolases, respectively. We hypothesized that the DesAB forms a complex and has steroid-17,20-desmolase activity. We cloned the desA and desB genes from C. scindens ATCC 35704 in pETDuet for overexpression in Escherichia coli The purified recombinant DesAB was determined to be a 142 ± 5.4 kDa heterotetramer. We developed an enzyme-linked continuous spectrophotometric assay to quantify steroid-17,20-desmolase. This was achieved by coupling DesAB-dependent formation of 11ß-hydroxyandrostenedione with the NADPH-dependent reduction of the steroid 17-keto group by a recombinant 17ß-HSDH from the filamentous fungus, Cochliobolus lunatus The pH optimum for the coupled assay was 7.0 and kinetic constants using cortisol as substrate were Km of 4.96 ± 0.57 µM and kcat of 0.87 ± 0.076 min-1 Substrate-specificity studies revealed that rDesAB recognized substrates regardless of 11ß-hydroxylation, but had an absolute requirement for 17,21-dihydroxy 20-ketosteroids.


Assuntos
Clostridium/enzimologia , Clostridium/genética , Esteroide 17-alfa-Hidroxilase/genética , Esteroide 17-alfa-Hidroxilase/metabolismo , Clonagem Molecular , Cinética , Especificidade por Substrato
16.
Appl Environ Microbiol ; 84(7)2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29330189

RESUMO

Gut metagenomic sequences provide a rich source of microbial genes, the majority of which are annotated by homology or unknown. Genes and gene pathways that encode enzymes catalyzing biotransformation of host bile acids are important to identify in gut metagenomic sequences due to the importance of bile acids in gut microbiome structure and host physiology. Hydroxysteroid dehydrogenases (HSDHs) are pyridine nucleotide-dependent enzymes with stereospecificity and regiospecificity for bile acid and steroid hydroxyl groups. HSDHs have been identified in several protein families, including medium-chain and short-chain dehydrogenase/reductase families as well as the aldo-keto reductase family. These protein families are large and contain diverse functionalities, making prediction of HSDH-encoding genes difficult and necessitating biochemical characterization. We located a gene cluster in Eggerthella sp. CAG:298 predicted to encode three HSDHs (CDD59473, CDD59474, and CDD59475) and synthesized the genes for heterologous expression in Escherichia coli We then screened bile acid substrates against the purified recombinant enzymes. CDD59475 is a novel 12α-HSDH, and we determined that CDD59474 (3α-HSDH) and CDD59473 (3ß-HSDH) constitute novel enzymes in an iso-bile acid pathway. Phylogenetic analysis of these HSDHs with other gut bacterial HSDHs and closest homologues in the database revealed predictable clustering of HSDHs by function and identified several likely HSDH sequences from bacteria isolated or sequenced from diverse mammalian and avian gut samples.IMPORTANCE Bacterial HSDHs have the potential to significantly alter the physicochemical properties of bile acids, with implications for increased/decreased toxicity for gut bacteria and the host. The generation of oxo-bile acids is known to inhibit host enzymes involved in glucocorticoid metabolism and may alter signaling through nuclear receptors such as farnesoid X receptor and G-protein-coupled receptor TGR5. Biochemical or similar approaches are required to fill in many gaps in our ability to link a particular enzymatic function with a nucleic acid or amino acid sequence. In this regard, we have identified a novel 12α-HSDH and a novel set of genes encoding an iso-bile acid pathway (3α-HSDH and 3ß-HSDH) involved in epimerization and detoxification of harmful secondary bile acids.


Assuntos
Actinobacteria/genética , Microbioma Gastrointestinal/genética , Genes Bacterianos , Família Multigênica/genética , 3-alfa-Hidroxiesteroide Desidrogenase (B-Específica)/genética , 3-alfa-Hidroxiesteroide Desidrogenase (B-Específica)/metabolismo , Actinobacteria/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Humanos , Hidroxiesteroide Desidrogenases/genética , Hidroxiesteroide Desidrogenases/metabolismo , Metagenômica
17.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1863(3): 276-283, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29217478

RESUMO

BACKGROUND: The multi-step bile acid 7α-dehydroxylating pathway by which a few species of Clostridium convert host primary bile acids to toxic secondary bile acids is of great importance to gut microbiome structure and host physiology and disease. While genes in the oxidative arm of the 7α-dehydroxylating pathway have been identified, genes in the reductive arm of the pathway are still obscure. METHODS: We identified a candidate flavoprotein-encoding gene predicted to metabolize steroids. This gene was cloned and overexpressed in E. coli and affinity purified. Reaction substrate and product were separated by thin layer chromatography and identified by liquid chromatograph mass spectrometry-ion trap-time of flight (LCMS-IT-TOF). Phylogenetic analysis of the amino acid sequence was performed. RESULTS: We report the identification of a gene encoding a flavoprotein (EDS08212.1) involved in secondary bile acid metabolism by Clostridium scindens ATCC 35704 and related species. Purified rEDS08212.1 catalyzed formation of a product from 3-dehydro-deoxycholic acid that UPLC-IT-TOF-MS analysis suggests loses 4amu. Our phylogeny identified this gene in other bile acid 7α-dehydroxylating bacteria. CONCLUSIONS: These data suggest formation of a product, 3-dehydro-4,6-deoxycholic acid, a recognized intermediate in the reductive arm of bile acid 7α-dehydroxylation pathway and the first report of a gene in the reductive arm of the bile acid 7α-dehydroxylating pathway.


Assuntos
Proteínas de Bactérias , Ácidos e Sais Biliares/metabolismo , Clostridium , Flavoproteínas , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Clostridium/genética , Clostridium/metabolismo , Flavoproteínas/biossíntese , Flavoproteínas/química , Flavoproteínas/genética , Flavoproteínas/isolamento & purificação , Humanos , Intestinos/microbiologia
18.
J Lipid Res ; 58(5): 916-925, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28314858

RESUMO

Members of the gastrointestinal microbiota are known to convert glucocorticoids to androstanes, which are subsequently converted to potent androgens by other members of the gut microbiota or host tissues. Butyricicoccus desmolans and Clostridium cadaveris have previously been reported for steroid-17,20-desmolase and 20ß-hydroxysteroid dehydrogenase (HSDH) activities that are responsible for androstane formation from cortisol; however, the genes encoding these enzymes have yet to be reported. In this work, we identified and located a gene encoding 20ß-HSDH in both B. desmolans and C. cadaveris The 20ß-HSDH of B. desmolans was heterologously overexpressed and purified from Escherichia coli The enzyme was determined to be a homotetramer with subunit molecular mass of 33.8 ± 3.7 kDa. The r20ß-HSDH displayed pH optimum in the reductive direction at pH 9.0 and in the oxidative direction at pH 7.0-7.5 with (20ß-dihydro)cortisol and NAD(H) as substrates. Cortisol is the preferred substrate with Km , 0.80 ± 0.06 µM; Vmax , 30.36 ± 1.97 µmol·min-1; Kcat , 607 ± 39 µmol·µM-1·min-1; Kcat /Km , 760 ± 7.67. Phylogenetic analysis of the 20ß-HSDH from B. desmolans suggested that the 20ß-HSDH is found in several Bifidobacterium spp, one of which was shown to express 20ß-HSDH activity. Notably, we also identified a novel steroid-17,20-desmolase-elaborating bacterium, Propionimicrobium lymphophilum, a normal inhabitant of the urinary tract.


Assuntos
Clostridiaceae/enzimologia , Clostridiaceae/genética , Hidroxiesteroide Desidrogenases/genética , Hidroxiesteroide Desidrogenases/metabolismo , Intestinos/microbiologia , Anaerobiose , Clostridiaceae/metabolismo , Clostridiaceae/fisiologia , Regulação Bacteriana da Expressão Gênica , Óperon/genética , Filogenia , Esteroides/metabolismo
19.
Int J Biol Macromol ; 98: 67-74, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28130134

RESUMO

Bone, a highly dynamic connective tissue, consist of a bioorganic phase comprising osteogenic cells and proteins which lies over an inorganic phase predominantly made of CaPO4 (biological apatite). Injury to bone can be due to mechanical, metabolic or inflammatory agents also owing pathological conditions like fractures, osteomyelitis, osteolysis or cysts may arise in enameloid, chondroid, cementum, or chondroid bone which forms the intermediate tissues of the body. Bone tissue engineering (BTE) applies bioactive scaffolds, host cells and osteogenic signals for restoring damaged or diseased tissues. Various bioceramics used in BTE can be bioactive (like glass ceramics and hydroxyapatite bioactive glass), bioresorbable (like tricalcium phosphates) or bioinert (like zirconia and alumina). Limiting the size of these materials to nano-scale has resulted in a higher surface area to volume ratio thereby improving multi-functionality, solubility, surface catalytic activity, high heat and electrical conductivity. Nanoceramics have been found to induce osteoconduction, osteointegration, osteogenesis and osteoinduction. The present review aims at summarizing the interactions of nanoceramics and osteoblast/stem cells for promoting the proliferation and differentiation of the osteoblast cells by nanoceramics as superior bone substitutes in bone tissue engineering applications.


Assuntos
Osso e Ossos/citologia , Diferenciação Celular/efeitos dos fármacos , Cerâmica/química , Cerâmica/farmacologia , Nanoestruturas/química , Osteoblastos/citologia , Engenharia Tecidual/métodos , Animais , Osso e Ossos/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Humanos , Osteoblastos/efeitos dos fármacos
20.
Sci Rep ; 6: 35342, 2016 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-27748409

RESUMO

Digestion of plant cell wall polysaccharides is important in energy capture in the gastrointestinal tract of many herbivorous and omnivorous mammals, including humans and ruminants. The members of the genus Ruminococcus are found in both the ruminant and human gastrointestinal tract, where they show versatility in degrading both hemicellulose and cellulose. The available genome sequence of Ruminococcus albus 8, a common inhabitant of the cow rumen, alludes to a bacterium well-endowed with genes that target degradation of various plant cell wall components. The mechanisms by which R. albus 8 employs to degrade these recalcitrant materials are, however, not clearly understood. In this report, we demonstrate that R. albus 8 elaborates multiple cellobiohydrolases with multi-modular architectures that overall enhance the catalytic activity and versatility of the enzymes. Furthermore, our analyses show that two cellobiose phosphorylases encoded by R. albus 8 can function synergistically with a cognate cellobiohydrolase and endoglucanase to completely release, from a cellulosic substrate, glucose which can then be fermented by the bacterium for production of energy and cellular building blocks. We further use transcriptomic analysis to confirm the over-expression of the biochemically characterized enzymes during growth of the bacterium on cellulosic substrates compared to cellobiose.


Assuntos
Celobiose/metabolismo , Celulose 1,4-beta-Celobiosidase/metabolismo , Regulação Bacteriana da Expressão Gênica , Fosforilases/metabolismo , Ruminococcus/enzimologia , Celulases/metabolismo , Celulose/metabolismo , Fermentação , Concentração de Íons de Hidrogênio , Hidrólise , Oligossacarídeos/química , Peptídeos/metabolismo , Ácidos Fosfóricos/metabolismo , Ligação Proteica , Temperatura , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA