Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Ecol Lett ; 25(3): 673-685, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35199917

RESUMO

Climate change is predicted to drive geographical range shifts, leading to fluctuations in species richness (SR) worldwide. However, the effect of these changes on functional diversity (FD) remains unclear, in part because comprehensive species-level trait data are generally lacking at global scales. Here, we use morphometric and ecological traits for 8268 bird species to estimate the impact of climate change on avian FD. We show that future bird assemblages are likely to undergo substantial shifts in trait structure, with a magnitude of change greater than predicted from SR alone, and a direction of change varying according to geographical location and trophic guild. For example, our models predict that FD of insect predators will increase at higher latitudes with concurrent losses at mid-latitudes, whereas FD of seed dispersing birds will fluctuate across the tropics. Our findings highlight the potential for climate change to drive continental-scale shifts in avian FD with implications for ecosystem function and resilience.


Assuntos
Mudança Climática , Ecossistema , Animais , Biodiversidade , Aves , Geografia
2.
Ecol Lett ; 25(3): 581-597, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35199922

RESUMO

Functional traits offer a rich quantitative framework for developing and testing theories in evolutionary biology, ecology and ecosystem science. However, the potential of functional traits to drive theoretical advances and refine models of global change can only be fully realised when species-level information is complete. Here we present the AVONET dataset containing comprehensive functional trait data for all birds, including six ecological variables, 11 continuous morphological traits, and information on range size and location. Raw morphological measurements are presented from 90,020 individuals of 11,009 extant bird species sampled from 181 countries. These data are also summarised as species averages in three taxonomic formats, allowing integration with a global phylogeny, geographical range maps, IUCN Red List data and the eBird citizen science database. The AVONET dataset provides the most detailed picture of continuous trait variation for any major radiation of organisms, offering a global template for testing hypotheses and exploring the evolutionary origins, structure and functioning of biodiversity.


Assuntos
Aves , Ecossistema , Animais , Biodiversidade , Evolução Biológica , Humanos , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA