Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Plant J ; 115(5): 1377-1393, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37243897

RESUMO

In RNA interference (RNAi), small interfering RNAs (siRNAs) produced from double-stranded RNA guide ARGONAUTE (AGO) proteins to silence sequence-complementary RNA/DNA. RNAi can propagate locally and systemically in plants, but despite recent advances in our understanding of the underlying mechanisms, basic questions remain unaddressed. For instance, RNAi is inferred to diffuse through plasmodesmata (PDs), yet how its dynamics in planta compares with that of established symplastic diffusion markers remains unknown. Also is why select siRNA species, or size classes thereof, are apparently recovered in RNAi recipient tissues, yet only under some experimental settings. Shootward movement of endogenous RNAi in micro-grafted Arabidopsis is also yet to be achieved, while potential endogenous functions of mobile RNAi remain scarcely documented. Here, we show (i) that temporal, localized PD occlusion in source leaves' companion cells (CCs) suffices to abrogate all systemic manifestations of CC-activated mobile transgene silencing, including in sink leaves; (ii) that the presence or absence of specific AGOs in incipient/traversed/recipient tissues likely explains the apparent siRNA length selectivity observed upon vascular movement; (iii) that stress enhancement allows endo-siRNAs of a single inverted repeat (IR) locus to translocate against the shoot-to-root phloem flow; and (iv) that mobile endo-siRNAs generated from this locus have the potential to regulate hundreds of transcripts. Our results close important knowledge gaps, rationalize previously noted inconsistencies between mobile RNAi settings, and provide a framework for mobile endo-siRNA research.


Assuntos
Arabidopsis , RNA de Cadeia Dupla , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , RNA de Cadeia Dupla/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Interferência de RNA , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Viés
2.
EMBO J ; 40(15): e107455, 2021 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-34152631

RESUMO

Plant microRNAs (miRNAs) guide cytosolic post-transcriptional gene silencing of sequence-complementary transcripts within the producing cells, as well as in distant cells and tissues. Here, we used an artificial miRNA-based system (amiRSUL) in Arabidopsis thaliana to explore the still elusive mechanisms of inter-cellular miRNA movement via forward genetics. This screen identified many mutant alleles of HASTY (HST), the ortholog of mammalian EXPORTIN5 (XPO5) with a recently reported role in miRNA biogenesis in Arabidopsis. In both epidermis-peeling and grafting assays, amiRSUL levels were reduced much more substantially in miRNA-recipient tissues than in silencing-emitting tissues. We ascribe this effect to HST controlling cell-to-cell and phloem-mediated movement of the processed amiRSUL, in addition to regulating its biogenesis. While HST is not required for the movement of free GFP or siRNAs, its cell-autonomous expression in amiRSUL-emitting tissues suffices to restore amiRSUL movement independently of its nucleo-cytosolic shuttling activity. By contrast, HST is dispensable for the movement and activity of amiRSUL within recipient tissues. Finally, HST enables movement of endogenous miRNAs that display mostly unaltered steady-state levels in hst mutant tissues. We discuss a role for HST as a hitherto unrecognized regulator of miRNA movement in relation to its recently assigned nuclear function at the nexus of MIRNA transcription and miRNA processing.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Carioferinas/metabolismo , MicroRNAs/metabolismo , Arabidopsis/citologia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Transporte Biológico/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Carioferinas/genética , Mutação , Floema/citologia , Floema/genética , Células Vegetais , Raízes de Plantas/citologia , Raízes de Plantas/genética , Plantas Geneticamente Modificadas , Interferência de RNA , RNA de Plantas , Xilema/citologia , Xilema/genética
3.
Nat Plants ; 6(7): 789-799, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32632272

RESUMO

In RNA interference (RNAi), the RNase III Dicer processes long double-stranded RNA (dsRNA) into short interfering RNA (siRNA), which, when loaded into ARGONAUTE (AGO) family proteins, execute gene silencing1. Remarkably, RNAi can act non-cell autonomously2,3: it is graft transmissible4-7, and plasmodesmata-associated proteins modulate its cell-to-cell spread8,9. Nonetheless, the molecular mechanisms involved remain ill defined, probably reflecting a disparity of experimental settings. Among other caveats, these almost invariably cause artificially enhanced movement via transitivity, whereby primary RNAi-target transcripts are converted into further dsRNA sources of secondary siRNA5,10,11. Whether siRNA mobility naturally requires transitivity and whether it entails the same or distinct signals for cell-to-cell versus long-distance movement remains unclear, as does the identity of the mobile signalling molecules themselves. Movement of long single-stranded RNA, dsRNA, free/AGO-bound secondary siRNA or primary siRNA have all been advocated12-15; however, an entity necessary and sufficient for all known manifestations of plant mobile RNAi remains to be ascertained. Here, we show that the same primary RNAi signal endows both vasculature-to-epidermis and long-distance silencing movement from three distinct RNAi sources. The mobile entities are AGO-free primary siRNA duplexes spreading length and sequence independently. However, their movement is accompanied by selective siRNA depletion reflecting the AGO repertoires of traversed cell types. Coupling movement with this AGO-mediated consumption process creates qualitatively distinct silencing territories, potentially enabling unlimited spatial gene regulation patterns well beyond those granted by mere gradients.


Assuntos
Interferência de RNA , RNA Interferente Pequeno/genética , Arabidopsis/genética , Clonagem Molecular , Imunoprecipitação , Microscopia de Fluorescência , RNA de Plantas/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de RNA
4.
Metab Eng ; 40: 23-32, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28216105

RESUMO

Global demand for higher crop yields and for more efficient utilization of agricultural products will grow over the next decades. Here, we present a new concept for boosting the carbohydrate content of plants, by channeling photosynthetically fixed carbon into a newly engineered glucose polymer pool. We transiently expressed the starch/glycogen synthases from either Saccharomyces cerevisiae or Cyanidioschyzon merolae, together with the starch branching enzyme from C. merolae, in the cytosol of Nicotiana benthamiana leaves. This effectively built a UDP-glucose-dependent glycogen biosynthesis pathway. Glycogen synthesis was observed with Transmission Electron Microscopy, and the polymer structure was further analyzed. Within three days of enzyme expression, glycogen content of the leaf was 5-10 times higher than the starch levels of the control. Further, the leaves produced less starch and sucrose, which are normally the carbohydrate end-products of photosynthesis. We conclude that after enzyme expression, the newly fixed carbohydrates were routed into the new glycogen sink and trapped. Our approach allows carbohydrates to be efficiently stored in a new subcellular compartment, thus increasing the value of vegetative crop tissues for biofuel production or animal feed. The method also opens new potential for increasing the sink strength of heterotrophic tissues.


Assuntos
Metabolismo dos Carboidratos/fisiologia , Melhoramento Genético/métodos , Glicogênio/metabolismo , Nicotiana/fisiologia , Folhas de Planta/fisiologia , Plantas Geneticamente Modificadas/metabolismo , Amido/metabolismo , Citosol/metabolismo , Regulação da Expressão Gênica de Plantas/fisiologia , Glucose/metabolismo , Engenharia Metabólica/métodos , Redes e Vias Metabólicas/genética , Plantas Geneticamente Modificadas/genética , Amido/genética , Regulação para Cima/fisiologia
5.
BMC Plant Biol ; 14: 199, 2014 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-25928247

RESUMO

BACKGROUND: Legumes have the unique capability to undergo root nodule and arbuscular mycorrhizal symbiosis. Both types of root endosymbiosis are regulated by NSP2, which is a target of microRNA171h (miR171h). Although, recent data implies that miR171h specifically restricts arbuscular mycorrhizal symbiosis in the root elongation zone of Medicago truncatula roots, there is limited knowledge available about the spatio-temporal regulation of miR171h expression at different physiological and symbiotic conditions. RESULTS: We show that miR171h is functionally expressed from an unusual long primary transcript, previously predicted to encode two identical miR171h strands. Both miR171h and NSP2 transcripts display a complex regulation pattern, which involves the symbiotic status and the fertilization regime of the plant. Quantitative Real-time PCR revealed that miR171h and NSP2 transcript levels show a clear anti-correlation in all tested conditions except in mycorrhizal roots, where NSP2 transcript levels were induced despite of an increased miR171h expression. This was also supported by a clear correlation of transcript levels of NSP2 and MtPt4, a phosphate transporter specifically expressed in a functional AM symbiosis. MiR171h is strongly induced in plants growing in sufficient phosphate conditions, which we demonstrate to be independent of the CRE1 signaling pathway and which is also not required for transcriptional induction of NSP2 in mycorrhizal roots. In situ hybridization and promoter activity analysis of both genes confirmed the complex regulation involving the symbiotic status, P and N nutrition, where both genes show a mainly mutual exclusive expression pattern. Overexpression of miR171h in M. truncatula roots led to a reduction in mycorrhizal colonization and to a reduced nodulation by Sinorhizobium meliloti. CONCLUSION: The spatio-temporal expression of miR171h and NSP2 is tightly linked to the nutritional status of the plant and, together with the results from the overexpression analysis, points to an important function of miR171h to integrate the nutrient homeostasis in order to safeguard the expression domain of NSP2 during both, arbuscular mycorrhizal and root nodule symbiosis.


Assuntos
Regulação da Expressão Gênica de Plantas , Medicago truncatula/metabolismo , MicroRNAs/metabolismo , Nódulos Radiculares de Plantas/metabolismo , Fertilizantes , Nitrogênio/metabolismo , Fosfatos , Fósforo/metabolismo , Proteínas de Plantas/metabolismo , Nodulação , Nódulos Radiculares de Plantas/microbiologia , Simbiose
6.
BMC Plant Biol ; 13: 82, 2013 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-23679580

RESUMO

BACKGROUND: Legumes have the unique capacity to undergo two important root endosymbioses: the root nodule symbiosis and the arbuscular mycorrhizal symbiosis. Medicago truncatula is widely used to unravel the functions of genes during these root symbioses. Here we describe the development of an artificial microRNA (amiR)-mediated gene silencing system for M. truncatula roots. RESULTS: The endogenous microRNA (miR) mtr-miR159b was selected as a backbone molecule for driving amiR expression. Heterologous expression of mtr-miR159b-amiR constructs in tobacco showed that the backbone is functional and mediates an efficient gene silencing. amiR-mediated silencing of a visible marker was also effective after root transformation of M. truncatula constitutively expressing the visible marker. Most importantly, we applied the novel amiR system to shed light on the function of a putative transcription factor, MtErf1, which was strongly induced in arbuscule-containing cells during mycorrhizal symbiosis. MtPt4 promoter driven amiR-silencing led to strongly decreased transcript levels and deformed, non-fully truncated arbuscules indicating that MtErf1 is required for arbuscule development. CONCLUSIONS: The endogenous amiR system demonstrated here presents a novel and highly efficient tool to unravel gene functions during root endosymbioses.


Assuntos
Fungos/fisiologia , Técnicas Genéticas , Medicago truncatula/genética , MicroRNAs/genética , Micorrizas/fisiologia , Proteínas de Plantas/genética , RNA de Plantas/genética , Simbiose , Regulação da Expressão Gênica de Plantas , Inativação Gênica , Medicago truncatula/microbiologia , Medicago truncatula/fisiologia , MicroRNAs/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/microbiologia , Raízes de Plantas/fisiologia , RNA de Plantas/metabolismo
7.
New Phytol ; 197(2): 606-616, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23190168

RESUMO

Arbuscular mycorrhizal (AM) symbiosis is a mutualistic interaction that occurs between the large majority of vascular plants and fungi of the phylum Glomeromycota. In addition to other nutrients, sulfur compounds are symbiotically transferred from AM fungus to host plants; however, the physiological importance of mycorrhizal-mediated sulfur for plant metabolism has not yet been determined. We applied different sulfur and phosphate fertilization treatments to Medicago truncatula and investigated whether mycorrhizal colonization influences leaf metabolite composition and the expression of sulfur starvation-related genes. The expression pattern of sulfur starvation-related genes indicated reduced sulfur starvation responses in mycorrhizal plants grown at 1 mM phosphate nutrition. Leaf metabolite concentrations clearly showed that phosphate stress has a greater impact than sulfur stress on plant metabolism, with no demand for sulfur at strong phosphate starvation. However, when phosphate nutrition is high enough, mycorrhizal colonization reduces sulfur stress responses, probably as a result of symbiotic sulfur uptake. Mycorrhizal colonization is able to reduce sulfur starvation responses in M. truncatula when the plant's phosphate status is high enough that sulfur starvation is of physiological importance. This clearly shows the impact of mycorrhizal sulfur transfer on plant metabolism.


Assuntos
Glomeromycota/fisiologia , Medicago truncatula/metabolismo , Medicago truncatula/microbiologia , Micorrizas/fisiologia , Enxofre/deficiência , Simbiose/fisiologia , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Biomassa , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas/genética , Glomeromycota/efeitos dos fármacos , Medicago truncatula/efeitos dos fármacos , Medicago truncatula/genética , Metaboloma/efeitos dos fármacos , Metaboloma/genética , Micorrizas/efeitos dos fármacos , Fenótipo , Fosfatos/farmacologia , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Análise de Componente Principal , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/genética , Enxofre/metabolismo , Simbiose/efeitos dos fármacos , Simbiose/genética , Transcrição Gênica/efeitos dos fármacos
8.
Plant Signal Behav ; 6(10): 1609-11, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21957499

RESUMO

Plant microRNAs (miRNAs) have an impact in the regulation of several biological processes such as development, growth and metabolism by negatively controlling gene expression at the post-transcriptional level. However, the role of these small molecules in the symbiotic interaction of plant roots and arbuscular mycorrhizal (AM) fungi remained elusive. To elucidate the role of miRNAs during AM symbiosis we used a deep sequencing approach to analyze the small RNA and degradome sequence tags of Medicago truncatula non-mycorrhizal and mycorrhizal roots. We identified 243 novel Medicago microRNAs and 118 mRNA cleavage targets of miRNA mature and star sequences. Several AM symbiosis-relevant genes were identified as miRNA targets. The transcript of MtNsp2, encoding a GRAS transcription factor involved in the nodule and mycorrhizal signaling pathway, is cleaved by a novel member of the miR171 gene family, namely miR171h. Here, we carried out a detailed analysis of the genomic structure of the MIR171h gene comprising our deep sequencing data. The results suggest a feedback circuit between mature miR171h and its own primary transcript showing the ability of this miRNA regulating itself.


Assuntos
Regulação da Expressão Gênica de Plantas , Medicago truncatula/genética , Estabilidade de RNA/genética , RNA de Plantas/genética , RNA de Plantas/metabolismo , Sequência de Bases , Loci Gênicos/genética , Genoma de Planta/genética , Medicago truncatula/microbiologia , MicroRNAs/genética , Dados de Sequência Molecular , Micorrizas/fisiologia
9.
Plant Physiol ; 156(4): 1990-2010, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21571671

RESUMO

The majority of plants are able to form the arbuscular mycorrhizal (AM) symbiosis in association with AM fungi. During symbiosis development, plant cells undergo a complex reprogramming resulting in profound morphological and physiological changes. MicroRNAs (miRNAs) are important components of the regulatory network of plant cells. To unravel the impact of miRNAs and miRNA-mediated mRNA cleavage on root cell reprogramming during AM symbiosis, we carried out high-throughput (Illumina) sequencing of small RNAs and degradome tags of Medicago truncatula roots. This led to the annotation of 243 novel miRNAs. An increased accumulation of several novel and conserved miRNAs in mycorrhizal roots suggest a role of these miRNAs during AM symbiosis. The degradome analysis led to the identification of 185 root transcripts as mature miRNA and also miRNA*-mediated mRNA cleavage targets. Several of the identified miRNA targets are known to be involved in root symbioses. In summary, the increased accumulation of specific miRNAs and the miRNA-mediated cleavage of symbiosis-relevant genes indicate that miRNAs are an important part of the regulatory network leading to symbiosis development.


Assuntos
Medicago truncatula/genética , Medicago truncatula/microbiologia , MicroRNAs/genética , Micorrizas/fisiologia , Simbiose/genética , Sequência de Bases , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Biblioteca Gênica , Genes de Plantas/genética , Genoma de Planta/genética , Sequenciamento de Nucleotídeos em Larga Escala , Hibridização In Situ , MicroRNAs/metabolismo , Anotação de Sequência Molecular , Especificidade de Órgãos/genética , Estabilidade de RNA/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA de Plantas/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transcriptoma/genética
10.
J Bacteriol ; 193(6): 1377-84, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21239587

RESUMO

Natural habitats are often characterized by a low availability of phosphate. In plants and many bacteria, phosphate deficiency causes different physiological responses, including the replacement of phosphoglycerolipids in the membranes with nonphosphorous lipids. We describe here a processive glycosyltransferase (Pgt) in Mesorhizobium loti (Rhizobiales) involved in the synthesis of di- and triglycosyldiacylglycerols (DGlycD and TGlycD) during phosphate deprivation. Cells of the corresponding Δpgt deletion mutant are deficient in DGlycD and TGlycD. Additional Pgt-independent lipids accumulate in Mesorhizobium after phosphate starvation, including diacylglyceryl trimethylhomoserine (DGTS) and ornithine lipid (OL). The accumulation of the nonphosphorous lipids during phosphate deprivation leads to the reduction of phosphoglycerolipids from 90 to 50%. Nodulation experiments of Mesorhizobium wild type and the Δpgt mutant with its host plant, Lotus japonicus, revealed that DGlycD and TGlycD are not essential for nodulation under phosphate-replete or -deficient conditions. Lipid measurements showed that the Pgt-independent lipids including OL and DGTS accumulate to higher proportions in the Δpgt mutant and therefore might functionally replace DGlycD and TGlycD during phosphate deprivation.


Assuntos
Alphaproteobacteria/enzimologia , Glicolipídeos/metabolismo , Glicosiltransferases/metabolismo , Fosfatos/metabolismo , Deleção de Genes , Glicosiltransferases/genética , Lotus/microbiologia , Fosfolipídeos/metabolismo , Nodulação
11.
Mol Plant Microbe Interact ; 23(7): 915-26, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20521954

RESUMO

Many plants improve their phosphate (Pi) availability by forming mutualistic associations with arbuscular mycorrhizal (AM) fungi. Pi-repleted plants are much less colonized by AM fungi than Pi-depleted plants. This indicates a link between plant Pi signaling and AM development. MicroRNAs (miR) of the 399 family are systemic Pi-starvation signals important for maintenance of Pi homeostasis in Arabidopsis thaliana and might also qualify as signals regulating AM development in response to Pi availability. MiR399 could either represent the systemic low-Pi signal promoting or required for AM formation or they could act as counter players of systemic Pi-availability signals that suppress AM symbiosis. To test either of these assumptions, we analyzed the miR399 family in the AM-capable plant model Medicago truncatula and could experimentally confirm 10 novel MIR399 genes in this species. Pi-depleted plants showed increased expression of mature miR399 and multiple pri-miR399, and unexpectedly, levels of five of the 15 pri-miR399 species were higher in leaves of mycorrhizal plants than in leaves of nonmycorrhizal plants. Compared with nonmycorrhizal Pi-depleted roots, mycorrhizal roots of Pi-depleted M. truncatula and tobacco plants had increased Pi contents due to symbiotic Pi uptake but displayed higher mature miR399 levels. Expression levels of MtPho2 remained low and PHO2-dependent Pi-stress marker transcript levels remained high in these mycorrhizal roots. Hence, an AM symbiosis-related signal appears to increase miR399 expression and decrease PHO2 activity. MiR399 overexpression in tobacco suggested that miR399 alone is not sufficient to improve mycorrhizal colonization supporting the assumption that, in mycorrhizal roots, increased miR399 are necessary to keep the MtPho2 expression and activity low, which would otherwise increase in response to symbiotic Pi uptake.


Assuntos
Regulação da Expressão Gênica de Plantas/fisiologia , Medicago truncatula/metabolismo , Medicago truncatula/microbiologia , Micorrizas/fisiologia , Fósforo/metabolismo , Proteínas de Plantas/metabolismo , Sequência de Bases , Biomarcadores , Fertilizantes , Proteínas de Plantas/genética , Raízes de Plantas/metabolismo , Estresse Fisiológico , Simbiose/fisiologia , Nicotiana/metabolismo , Nicotiana/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA