Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Biomol Struct Dyn ; : 1-15, 2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37340670

RESUMO

Tuberculosis (TB) is a prehistoric infection and major etiologic agent of TB, Mycobacterium tuberculosis, which is considered to have advanced from an early progenitor species found in Eastern Africa. By the 1800s, there were approximately 800 to 1000 fatality case reports per 100,000 people in Europe and North America. This research suggests an In-silico study to identify potential inhibitory compounds for the target Mycobacterial copper transport protein (Mctb). ADME-based virtual screening, molecular docking, and molecular dynamics simulations were conducted to find promising compounds to modulate the function of the target protein. Four chemical compounds, namely Anti-MCT1, Anti-MCT2, Anti-MCT3 and Anti-MCT4 out of 1500 small molecules from the Diverse-lib of MTiOpenScreen were observed to completely satisfy Lipinski rule of five and Veber's rule. Further, significantly steady interactions with the MctB target protein were observed. Docking experiments have presented 9 compounds with less than -9.0 kcal/mol free binding energies and further MD simulation eventually gave 4 compounds having potential interactions and affinity with target protein and favorable binding energy ranging from -9.2 to -9.3 kcal/mol. We may propose these compounds as an effective candidate to reduce the growth of M. tuberculosis and may also assist present a novel therapeutic approach for Tuberculosis. In vivo and In vitro validation would be needed to proceed further in this direction.Communicated by Ramaswamy H. Sarma.

2.
Biosci Rep ; 43(3)2023 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-35348180

RESUMO

Farnesoid X receptor (FXR) modulates the expression of genes involved in lipid and carbohydrate homeostasis and inflammatory processes. This nuclear receptor is likely a tumor suppressor in several cancers, but its molecular mechanism of suppression is still under study. Several studies reported that FXR agonism increases the survival of colorectal, biliary tract, and liver cancer patients. In addition, FXR expression was shown to be down-regulated in many diseases such as obesity, irritable bowel syndrome, glomerular inflammation, diabetes, proteinuria, and ulcerative colitis. Therefore, development of novel FXR agonists may have significant potential in the prevention and treatment of these diseases. In this scenario, computer-aided drug design procedures can be resourcefully applied for the rapid identification of promising drug candidates. In the present study, we applied the molecular docking method in conjunction with molecular dynamics (MD) simulations to find out potential agonists for FXR based on structural similarity with the drug that is currently used as FXR agonist, obeticholic acid. Our results showed that alvimopan and montelukast could be used as potent FXR activators and outperform the binding affinity of obeticholic acid by forming stable conformation with the protein in silico. However, further investigational studies and validations of the selected drugs are essential to figure out their suitability for preclinical and clinical trials.


Assuntos
Reposicionamento de Medicamentos , Simulação de Dinâmica Molecular , Humanos , Simulação de Acoplamento Molecular , Conformação Molecular , Desenho de Fármacos
3.
J Biomol Struct Dyn ; 41(7): 2713-2732, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-35132938

RESUMO

Scientists are rigorously looking for an efficient vaccine against the current pandemic due to the SARS-CoV-2 virus. The reverse vaccinology approach may provide us with significant therapeutic leads in this direction and further determination of T-cell/B-cell response to antigen. In the present study, we conducted a population coverage analysis referring to the diverse Indian population. From the Immune epitope database (IEDB), HLA- distribution analysis was performed to find the most promiscuous T-cell epitope out of In silico determined epitope of Spike protein from SARS-CoV-2. Epitopes were selected based on their binding affinity with the maximum number of HLA alleles belonging to the highest population coverage rate values for the chosen geographical area in India. 404 cleavage sites within the 1288 amino acids sequence of spike glycoprotein were determined by NetChop proteasomal cleavage prediction suggesting the presence of adequate sites in the protein sequence for cleaving into appropriate epitopes. For population coverage analysis, 179 selected epitopes present the projected population coverage up to 97.45% with 56.16 average hit and 15.07 pc90. 54 epitopes are found with the highest coverage among the Indian population and highly conserved within the given spike RBD domain sequence. Among all the predicted epitopes, 9-mer TRFASVYAW and RFDNPVLPF along with 12-mer LLAGTITSGWTF and VSQPFLMDLEGK epitopes are observed as the best due to their decent docking score and best binding affinity to corresponding HLA alleles during MD simulations. Outcomes from this study could be critical to design a vaccine against SARS-CoV-2 for a different set of populations within the country.Communicated by Ramaswamy H. Sarma.


Assuntos
COVID-19 , Glicoproteína da Espícula de Coronavírus , Vacinas Virais , Humanos , Vacinas contra COVID-19 , Epitopos de Linfócito T , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/química , Vacinas Virais/química
4.
J Biomol Struct Dyn ; 40(22): 11932-11947, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34424817

RESUMO

Shigella dysenteriae type 1 is considered as an epidemic in different developing countries, which is responsible for the most severe form of bacterial dysentery. It habitually can develop to the most severe form of dysentery with deadly complications. Development of drugs against this disease is still ongoing. Therefore, we used in silico studies to screen the Inula britannica phytocompounds that are used in traditional Chinese and Kampo Medicines and have activities against different diseases. Spinacetin, eupatin, chrysoeriol and diosmetin were successfully passed through the docking-based screening and absorption, distribution, metabolism, excretion and toxicity (ADMET) filtration. The estimated docking affinities of eupatin, diosmetin, chrysoeriol and spinacetin with Dihydrofolate reductase type 1 (DHFR-1), were -6.5, -6.5, -6.3 and -6.1 kcal/mol, respectively. Which were selected for further investigations based on their favorable ADME/Tox characteristics. Then, the 100 ns molecular dynamics (MD) simulations of apo DHFR, spinacetin-DHFR, eupatin-DHFR, chrysoeriol-DHFR and diosmetin-DHFR complexes were carried out. The RMSD fluctuations of the spinacetin, eupatin, chrysoeriol and diosmetin inside the binding site were explored. Subsequently, the effect of binding Spinacetin, eupatin, chrysoeriol and diosmetin upon the dynamic stability of protein was assessed. Additionally, Principal Component Analysis (PCA) and Hydrogen bond analysis was performed for the apo protein and the protein ligand complexes. The results revealed that chrysoeriol and eupatin has good inhibitory effects against DHFR-1 as treatment for Shigella dysenteriae type when compared to other compounds under study. Hence this study implies that eupatin and chrysoeriol are a significantly potential drug like molecule for the treatment of Shigellosis and must undergo validation through in vivo and in vitro experiments.Communicated by Ramaswamy H. Sarma.


Assuntos
Disenteria Bacilar , Inula , Inula/metabolismo , Tetra-Hidrofolato Desidrogenase/metabolismo , Simulação de Dinâmica Molecular , Sítios de Ligação , Simulação de Acoplamento Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA