Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 13: 943211, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35874002

RESUMO

A diverse panel of wheat wild relative species was screened for resistance to Fusarium head blight (FHB) by spray inoculation. The great majority of species and accessions were susceptible or highly susceptible to FHB. Accessions of Triticum timopheevii (P95-99.1-1), Agropyron desertorum (9439957), and Elymus vaillantianus (531552) were highly resistant to FHB while additional accessions of T. timopheevii were found to be susceptible to FHB. A combination of spray and point inoculation assessments over two consecutive seasons indicated that the resistance in accession P95-99.1-1 was due to enhanced resistance to initial infection of the fungus (type 1 resistance), and not to reduction in spread (type 2 resistance). A panel of wheat-T. timopheevii (accession P95-99.1-1) introgression lines was screened for FHB resistance over two consecutive seasons using spray inoculation. Most introgression lines were similar in susceptibility to FHB as the wheat recipient (Paragon) but substitution of the terminal portion of chromosome 3BS of wheat with a similar-sized portion of 3G of T. timopheevii significantly enhanced FHB resistance in the wheat background.

2.
Foods ; 10(7)2021 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-34359479

RESUMO

Pearl millet is an underutilized and drought-resistant crop that is mainly used for animal feed and fodder. Starch (70%) is the main constituent of the pearl millet grain; this starch may be a good substitute for major sources of starch such as corn, rice, potatoes, etc. Starch was isolated from pearl millet grains and modified with different physical treatments (heat-moisture (HMT), microwave (MT), and sonication treatment (ST)). The amylose content and swelling capacity of the starches decreased after HMT and MT, while the reverse was observed for ST. Transition temperatures (onset (To), peak of gelatinization (Tp), and conclusion (Tc)) of the starches ranged from 62.92-76.16 °C, 67.95-81.05 °C, and 73.78-84.50 °C, respectively. After modification (HMT, MT, and ST), an increase in the transition temperatures was observed. Peak-viscosity of the native starch was observed to be 995 mPa.s., which was higher than the starch modified with HMT and MT. Rheological characteristics (storage modulus (G') and loss modulus (G'')) of the native and modified starches differed from 1039 to 1730 Pa and 83 to 94 Pa; the largest value was found for starch treated with ST and HMT. SEM showed cracks and holes on granule surfaces after HMT as well as MT starch granules. Films were prepared using both native and modified starches. The modification of the starches with different treatments had a significant impact on the moisture, transmittance, and solubility of films. The findings of this study will provide a better understanding of the functional properties of pearl millet starch for its possible utilization in film formation.

3.
Front Genet ; 11: 593426, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33414807

RESUMO

Wheat (Triticum aestivum L.) is an important cereal crop globally as well as in India and yield improvement programs encounter a strong impediment from ever-evolving rust pathogens. Hence, durable rust resistance is always a priority trait for wheat breeders globally. Grain weight, represented as thousand grain weight (TGW), is the most important yield-contributing trait in wheat. In the present study high TGW has been transferred into two elite Indian wheat cultivars PBW343 and PBW550 from a high TGW genotype, Rye selection 111, selected from local germplasm. In the background of PBW343 and PBW550, an increase in TGW upto 27.34 and 18% was observed, respectively (with respect to recipient parents), through conventional backcross breeding with phenotypic selections in 3 years replicated RBD trials. Resistance to leaf rust and stripe rust has been incorporated in the high TGW version of PBW550 through marker assisted pyramiding of stripe rust resistance gene Yr15 using marker Xuhw302, and a pair of linked leaf rust and stripe rust resistance genes Lr57-Yr40 using marker Ta5DS-2754099_kasp23. Improved versions of PBW550 with increased TGW ranging from 45.0 to 46.2 g (up to a 9% increase) and stacked genes for stripe and leaf rust resistance have been developed. This study serves as proof of utilizing conventional breeding and phenotypic selection combined with modern marker assisted selection in improvement of important wheat cultivars as a symbiont of conventional and moderan techniques.

4.
Plant Biotechnol J ; 18(3): 743-755, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31465620

RESUMO

For future food security, it is important that wheat, one of the most widely consumed crops in the world, can survive the threat of abiotic and biotic stresses. New genetic variation is currently being introduced into wheat through introgressions from its wild relatives. For trait discovery, it is necessary that each introgression is homozygous and hence stable. Breeding programmes rely on efficient genotyping platforms for marker-assisted selection (MAS). Recently, single nucleotide polymorphism (SNP)-based markers have been made available on high-throughput Axiom® SNP genotyping arrays. However, these arrays are inflexible in their design and sample numbers, making their use unsuitable for long-term MAS. SNPs can potentially be converted into Kompetitive allele-specific PCR (KASP™) assays that are comparatively cost-effective and efficient for low-density genotyping of introgression lines. However, due to the polyploid nature of wheat, KASP assays for homoeologous SNPs can have difficulty in distinguishing between heterozygous and homozygous hybrid lines in a backcross population. To identify co-dominant SNPs, that can differentiate between heterozygotes and homozygotes, we PCR-amplified and sequenced genomic DNA from potential single-copy regions of the wheat genome and compared them to orthologous copies from different wild relatives. A panel of 620 chromosome-specific KASP assays have been developed that allow rapid detection of wild relative segments and provide information on their homozygosity and site of introgression in the wheat genome. A set of 90 chromosome-nonspecific assays was also produced that can be used for genotyping introgression lines. These multipurpose KASP assays represent a powerful tool for wheat breeders worldwide.


Assuntos
Mapeamento Cromossômico , Homozigoto , Melhoramento Vegetal , Triticum/genética , Cromossomos de Plantas/genética , Genótipo , Polimorfismo de Nucleotídeo Único
5.
BMC Plant Biol ; 19(1): 183, 2019 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-31060503

RESUMO

BACKGROUND: Triticum timopheevii (2n = 4x = 28; AtAtGG), is an important source for new genetic variation for wheat improvement with genes for potential disease resistance and salt tolerance. By generating a range of interspecific hybrid lines, T. timopheevii can contribute to wheat's narrow gene-pool and be practically utilised in wheat breeding programmes. Previous studies that have generated such introgression lines between wheat and its wild relatives have been unable to use high-throughput methods to detect the presence of wild relative segments in such lines. RESULTS: A whole genome introgression approach, exploiting homoeologous recombination in the absence of the Ph1 locus, has resulted in the transfer of different chromosome segments from both the At and G genomes of T. timopheevii into wheat. These introgressions have been detected and characterised using single nucleotide polymorphism (SNP) markers present on a high-throughput Axiom® Genotyping Array. The analysis of these interspecific hybrid lines has resulted in the detection of 276 putative unique introgressions from T. timopheevii, thereby allowing the generation of a genetic map of T. timopheevii containing 1582 SNP markers, spread across 14 linkage groups representing each of the seven chromosomes of the At and G genomes of T. timopheevii. The genotyping of the hybrid lines was validated through fluorescence in situ hybridisation (FISH). Comparative analysis of the genetic map of T. timopheevii and the physical map of the hexaploid wheat genome showed that synteny between the two species is highly conserved at the macro-level and confirmed the presence of inter- and intra-genomic translocations within the At and G genomes of T. timopheevii that have been previously only detected through cytological techniques. CONCLUSIONS: In this work, we report a set of SNP markers present on a high-throughput genotyping array, able to detect the presence of T. timopheevii in a hexaploid wheat background making it a potentially valuable tool for marker assisted selection (MAS) in wheat pre-breeding programs. These valuable resources of high-density molecular markers and wheat-T. timopheevii hybrid lines will greatly enhance the work being undertaken for wheat improvement through wild relative introgressions.


Assuntos
Genoma de Planta , Hibridização Genética , Poliploidia , Triticum/genética , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Cruzamentos Genéticos , Ecótipo , Ligação Genética , Loci Gênicos , Marcadores Genéticos , Genótipo , Polimorfismo de Nucleotídeo Único/genética , Recombinação Genética/genética , Sementes/genética , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA