Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 912: 169017, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38040371

RESUMO

Permafrost is ground that remains at or below 0 °C for two or more consecutive years. It is overlain by an active layer which thaws and freezes annually. The difference between these definitions - the active layer based on pore water phase and permafrost based on soil temperature - leads to challenges when monitoring and modelling permafrost environments. Contrary to its definition, the key properties of permafrost including hardness, bearing capacity, permeability, unfrozen water content, and energy content, depend primarily on the ice content of permafrost and not its temperature. Temperature-based measurements in permafrost systems often overlook key features, e.g. taliks and cryopegs, and comparisons between measured and modelled systems can differ energetically by up to 90 % while reporting the same temperature. Due to the shortcomings of the temperature-based definition, it is recommended that an estimate of ice content be reported alongside temperature in permafrost systems for both in-situ measurements and modelling applications. PLAIN LANGUAGE SUMMARY: Permafrost is ground that remains at or below 0 °C for two or more consecutive years. Above it sits an active layer which thaws and freezes annually (meaning that the water in the ground changes to ice each winter). The difference between these definitions - the active layer based on the state or water in the ground and permafrost based on ground temperature - leads to challenges when measuring (in the field) and modelling (using computers) permafrost environments. In addition to these challenges, the key properties of permafrost including its ability to support infrastructure, convey water, and absorb energy depend more on its ice content than its temperature. Due to the shortcomings of the temperature-based definition, it is recommended that an estimate of ice content be reported alongside temperature in permafrost systems for both field measurements and modelling applications.

2.
J Phys Condens Matter ; 24(45): 455502, 2012 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-23085846

RESUMO

Advances in the development of amorphous selenium-based direct conversion photoconductors for high-energy radiation critically depend on the improvement of its sensitivity to ionizing radiation, which is directly related to the pair production energy. Traditionally, theories for the pair production energy have been based on the parabolic band approximation and do not provide a satisfactory agreement with experimental results for amorphous selenium. Here we present a calculation of the pair creation energy in trigonal and amorphous selenium based on its electronic structure. In indirect semiconductors, such as trigonal selenium, the ionization threshold energy can be as low as the energy gap, resulting in a lower pair creation energy, which is a favorable factor for sensitivity. Also, the statistics of photogenerated charge carriers is studied in order to evaluate the theoretical value of the Fano factor and its dependence on recombination processes. We show that recombination can significantly compromise the detector's energy resolution as a result of an increase in the Fano factor.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA