Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Mater Chem B ; 9(47): 9670-9683, 2021 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-34726228

RESUMO

We investigated a series of Mn2+-Prussian blue (PB) nanoparticles NazMnxFe1-x[Fe(CN)6]1-y□y·nH2O of similar size, surface state and cubic morphology with various amounts of Mn2+ synthesized through a one step self-assembly reaction. We demonstrated by a combined experimental-theoretical approach that during the synthesis, Mn2+ substituted Fe3+ up to a Mn/Na-Mn-Fe ratio of 32 at% in the PB structure, while for higher amounts, the Mn2[Fe(CN)6] analogue is obtained. For comparison, the post-synthetic insertion of Mn2+ in PB nanoparticles was also investigated and completed with Monte-Carlo simulations to probe the plausible adsorption sites. The photothermal conversion efficiency (η) of selected samples was determined and showed a clear dependence on the Mn2+amount with a maximum efficiency for a Mn/Na-Mn-Fe ratio of 10 at% associated with a dependence on the nanoparticle concentration. Evaluation of the in vitro photothermal properties of these nanoparticles performed on triple negative human breast adenocarcinoma (MDA-MB-231) cells by using continuous and pulsed laser irradiation confirm their excellent PTT efficiency permitting low dose use.


Assuntos
Antineoplásicos/uso terapêutico , Ferrocianetos/uso terapêutico , Manganês/química , Nanopartículas/uso terapêutico , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Animais , Antineoplásicos/síntese química , Antineoplásicos/efeitos da radiação , Linhagem Celular Tumoral , Ferrocianetos/química , Ferrocianetos/efeitos da radiação , Humanos , Ferro/química , Ferro/efeitos da radiação , Manganês/efeitos da radiação , Nanopartículas/química , Nanopartículas/efeitos da radiação , Processos Fotoquímicos , Terapia Fototérmica , Ensaios Antitumorais Modelo de Xenoenxerto , Peixe-Zebra
2.
Nanomaterials (Basel) ; 11(7)2021 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-34361135

RESUMO

We report here a novel "one-pot" approach for the controlled growth and organization of Prussian blue nanostructures on three different surfaces: pure Au0, cysteamine-functionalized Au0, and SiO2-supported lipid bilayers with different natures of lipids. We demonstrate that fine control over the size, morphology, and the degree and homogeneity of the surface coverage by Prussian Blue (PB) nanostructures may be achieved by manipulating different parameters, which are the precursor concentration, the nature of the functional groups or the nature of lipids on the surfaces. This allows the growth of isolated PB nanopyramids and nanocubes or the design of thin dense films over centimeter square surfaces. The formation of unusual Prussian blue nanopyramids is discussed. Finally, we demonstrate, by using experimental techniques and theoretical modeling, that PB nanoparticles deposited on the gold surface exhibit strong photothermal properties, permitting a rapid temperature increase up to 90 °C with a conversion of the laser power of almost 50% for power source heat.

3.
Adv Drug Deliv Rev ; 176: 113837, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34144089

RESUMO

Compared to chemicals that continue to dominate the overall pharmaceutical market, protein therapeutics offer the advantages of higher specificity, greater activity, and reduced toxicity. While nearly all existing therapeutic proteins were developed against soluble or extracellular targets, the ability for proteins to enter cells and target intracellular compartments can significantly broaden their utility for a myriad of exiting targets. Given their physical, chemical, biological instability that could induce adverse effects, and their limited ability to cross cell membranes, delivery systems are required to fully reveal their biological potential. In this context, as natural protein nanocarriers, extracellular vesicles (EVs) hold great promise. Nevertheless, if not present naturally, bringing an interest protein into EV is not an easy task. In this review, we will explore methods used to load extrinsic protein into EVs and compare these natural vectors to their close synthetic counterparts, liposomes/lipid nanoparticles, to induce intracellular protein delivery.


Assuntos
Vesículas Extracelulares/metabolismo , Lipossomos , Nanopartículas , Proteínas/administração & dosagem , Animais , Sistemas de Liberação de Medicamentos , Humanos , Proteínas/efeitos adversos , Proteínas/metabolismo
4.
RSC Adv ; 11(49): 30887-30897, 2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-35498928

RESUMO

Hybrid hydrogels based on silylated polyethylene glycol, Si-PEG, were evaluated as hybrid matrices able to trap, stabilize and release bovine serum albumin (BSA) in a controlled manner. Parameters of the inorganic condensation reaction leading to a siloxane (Si-O-Si) three dimensional network were carefully investigated, in particular the temperature, the surrounding hygrometry and the Si-PEG concentration. The resulting hydrogel structural features affected the stability, swelling, and mechanical properties of the network, leading to different protein release profiles. Elongated polymer assemblies were observed, the length of which ranged from 150 nm to over 5 µm. The length could be correlated to the Si-O-Si condensation rate from 60% (hydrogels obtained at 24 °C) to about 90% (xerogels obtained at 24 °C), respectively. Consequently, the controlled release of BSA could be achieved from hours to several weeks, with respect to the fibers' length and the condensation rate. The protein stability was evaluated by means of a thermal study. The main results gave insight into the biomolecule structure preservation during polymerisation, with ΔG < 0 for encapsulated BSA in any conditions, below the melting temperature (65 °C).

5.
J Pharm Sci ; 110(3): 1197-1205, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33069708

RESUMO

The aim of this work was to carry out a preformulation study on JMV5038 as a new potent cytotoxic agent, and to develop its formulation within vegetable oil-based hybrid submicron particles (HNP) in order to obtain a versatile dosage form against melanoma. JMV5038 was first characterized through physico-chemical tests and it exhibited high melting point and logP value, an important pH-sensitivity that led to the formation of well-identified degradation products at low pH, as well as a substantial solubility value in silylated castor oil (ICO). Then, JMV5038-loaded HNP were formulated through a thermostabilized emulsion process based on the sol-gel cross-linking of ICO. They showed high loading efficiency and their in vitro release kinetic assessed in a biorelevant PBS/octanol biphasic system showed a constant sustained release over one month. The cytotoxic activity and cytocompatibility of HNP were evaluated on A375 melanoma cells and NIH 3T3 cells, respectively. JMV5038-loaded HNP exhibited a slightly enhanced cytotoxic activity of JMV5038 on melanoma cells while demonstrating their safety on NIH 3T3 cells. In conclusion, JMV5038-loaded HNP proved to be an efficient and safe drug subcutaneous delivery system that will be interesting to evaluate through preclinical studies.


Assuntos
Melanoma , Óleos de Plantas , Animais , Óleo de Rícino , Emulsões , Melanoma/tratamento farmacológico , Camundongos , Tamanho da Partícula , Solubilidade
6.
Int J Pharm ; 592: 120070, 2021 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-33188895

RESUMO

The aim of this study was to evidence the ability of vegetable oil-based hybrid microparticles (HMP) to be an efficient and safe drug delivery system after subcutaneous administration. The HMP resulted from combination of a thermostabilized emulsification process and a sol-gel chemistry. First of all, castor oil was successfully silylated by means of (3-Isocyanatopropyl)trimethoxysilane in solvent-free and catalyst-free conditions. Estradiol, as a model drug, was dissolved in silylated castor oil (ICOm) prior to emulsification, and then an optimal sol-gel crosslinking was achieved inside the ICOm microdroplets. The resulting estradiol-loaded microparticles were around 80 µm in size and allowed to entrap 4 wt% estradiol. Their release kinetics in a PBS/octanol biphasic system exhibited a one-week release profile, and the released estradiol was fully active on HeLa ERE-luciferase ERα cells. The hybrid microparticles were cytocompatible during preliminary tests on NIH 3T3 fibroblasts (ISO 10993-5 standard) and they were fully biocompatible after subcutaneous injection on mice (ISO 10993-6 standard) underlining their high potential as a safe and long-acting subcutaneous drug delivery system.


Assuntos
Preparações Farmacêuticas , Óleos de Plantas , Animais , Óleo de Rícino , Sistemas de Liberação de Medicamentos , Camundongos , Tamanho da Partícula , Solventes
7.
Materials (Basel) ; 13(16)2020 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-32806728

RESUMO

A novel bio-hybrid drug delivery system was obtained involving a Mg/Al-NO3 layered double hydroxide (LDH) intercalated either with ibuprofenate anions (IBU) or a phospholipid bilayer (BL) containing a neutral drug, i.e., 17ß-estradiol, and then embedded in chitosan beads. The combination of these components in a hierarchical structure led to synergistic effects investigated through characterization of the intermediates and the final bio-composites by XRD, TG, SEM, and TEM. That allowed determining the presence and yield of IBU and of BL in the interlayer space of LDH, and of the encapsulated LDH in the beads, as well as the morphology of the latter. Peculiar attention has been paid to the intercalation process of the BL for which all available data substantiate the hypothesis of a first interaction at the defect of the LDH, as well as on the interaction mode of these components. 1H, 31P and 27Al MAS-NMR studies allowed establishing that the intercalated BL is not homogeneous and likely formed patches. Release kinetics were performed for sodium ibuprofenate as well as for the association of 17ß-estradiol within the negatively charged BL, each encapsulated in the LDH/chitosan hybrid materials. Such new bio-hybrids offer an interesting outlook into the pharmaceutical domain with the ability to be used as sustained release systems for a wide variety of anionic and, importantly, neutral drugs.

8.
RSC Adv ; 10(5): 2646-2649, 2020 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35496092

RESUMO

We demonstrate here that Mn2+-doped Prussian blue nanoparticles of ca. 55 nm loaded with doxorubicin may be used as efficient therapeutic agents for combined photothermal and chemo-therapy of cancer cells with a synergic effect under two photon irradiation.

9.
Biomaterials ; 231: 119675, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31838346

RESUMO

In regards to their key role in intercellular communication, extracellular vesicles (EVs) have a strong potential as bio-inspired drug delivery systems (DDS). With the aim of circumventing some of their well-known issues (production yield, drug loading yield, pharmacokinetics), we specifically focused on switching the biological vision of these entities to a more physico-chemical one, and to consider and fine-tune EVs as synthetic vectors. To allow a rational use, we first performed a full physico-chemical (size, concentration, surface charge, cryoTEM), biochemical (western blot, proteomics, lipidomics, transcriptomics) and biological (cell internalisation) characterisation of murine mesenchymal stem cell (mMSC)-derived EVs. A stability study based on evaluating the colloidal behaviour of obtained vesicles was performed in order to identify optimal storage conditions. We evidenced the interest of using EVs instead of liposomes, in regards to target cell internalisation efficiency. EVs were shown to be internalised through a caveolae and cholesterol-dependent pathway, following a different endocytic route than liposomes. Then, we characterised the effect of physical methods scarcely investigated with EVs (extrusion through 50 nm membranes, freeze-drying, sonication) on EV size, concentration, structure and cell internalisation properties. Our extensive characterisation of the effect of these physical processes highlights their promise as loading methods to make EVs efficient delivery vehicles.


Assuntos
Vesículas Extracelulares , Células-Tronco Mesenquimais , Animais , Sistemas de Liberação de Medicamentos , Liofilização , Lipossomos , Camundongos
10.
Int J Pharm ; 567: 118478, 2019 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-31260782

RESUMO

To encapsulate and deliver poorly water-soluble drugs, castor oil/silica hybrid microparticles (HMP)s were synthesized. Green chemistries were used to silylate the oil and further cross-link it into solid microparticles by sol-gel reaction. Silylated castor oils (ICO)s at various silylation ratios were prepared and allowed the solubilization of ibuprofen at several concentrations up to 16 wt%. The HMPs were formulated by ThermoStabilized Emulsion (TSE) process which permits to "freeze" the oil-in-water emulsion while the sol-gel reaction occurs. The hybrid mineral/organic composition and the morphology (spherical shape and micrometric size) of these HMPs were determined by complementary technics (SEM, TGA, EDX, 29Si NMR and FTIR spectroscopies). The HMPs reached a good ibuprofen loading efficiency regardless to the formulation used while the release kinetics in simulated oral administration exhibited a tunable release during 3 h according to the silylation ratio. The ibuprofen rate also influenced its own amorphous or crystalline character within the HMPs. For subcutaneous conditions, ibuprofen release took place over 15 days. Finally, biodegradability assays in simulated digestion medium suggested a surface-limited hydrolysis of the particles and cytocompatibility studies on NIH-3T3 and Caco-2 cells demonstrated an excellent cellular viability.


Assuntos
Óleo de Rícino/administração & dosagem , Portadores de Fármacos/administração & dosagem , Dióxido de Silício/administração & dosagem , Administração Oral , Animais , Anti-Inflamatórios não Esteroides/administração & dosagem , Anti-Inflamatórios não Esteroides/química , Células CACO-2 , Óleo de Rícino/química , Sobrevivência Celular/efeitos dos fármacos , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Humanos , Ibuprofeno/administração & dosagem , Ibuprofeno/química , Camundongos , Células NIH 3T3 , Dióxido de Silício/química , Solubilidade , Água/química
11.
Biomimetics (Basel) ; 3(3)2018 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-31105244

RESUMO

Careful analysis of any new nanomedicine device or disposal should be undertaken to comprehensively characterize the new product before application, so that any unintended side effect is minimized. Because of the increasing number of nanotechnology-based drugs, we can anticipate that regulatory authorities might adapt the approval process for nanomedicine products due to safety concerns, e.g., request a more rigorous testing of the potential toxicity of nanoparticles (NPs). Currently, the use of mesoporous silica nanoparticles (MSN) as drug delivery systems is challenged by a lack of data on the toxicological profile of coated or non-coated MSN. In this context, we have carried out an extensive study documenting the influence of different functionalized MSN on the cellular internalization and in vivo behaviour. In this article, a synthesis of these works is reviewed and the perspectives are drawn. The use of magnetic MSN (Fe3O4@MSN) allows an efficient separation of coated NPs from cell cultures with a simple magnet, leading to results regarding corona formation without experimental bias. Our interest is focused on the mechanism of interaction with model membranes, the adsorption of proteins in biological fluids, the quantification of uptake, and the effect of such NPs on the transcriptomic profile of hepatic cells that are known to be readily concerned by NPs' uptake in vivo, especially in the case of an intravenous injection.

12.
Nanotoxicology ; 11(7): 871-890, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28937306

RESUMO

Magnetic mesoporous silica nanoparticles (M-MSNs) are a promising class of nanoparticles for drug delivery. However, a deep understanding of the toxicological mechanisms of action of these nanocarriers is essential, especially in the liver. The potential toxicity on HepaRG cells of pristine, pegylated (PEG), and lipid (DMPC) M-MSNs were compared. Based on MTT assay and real-time cell impedance, none of these NPs presented an extensive toxicity on hepatic cells. However, we observed by transmission electron microscopy (TEM) that the DMPC and pristine M-MSNs were greatly internalized. In comparison, PEG M-MSNs showed a slower cellular uptake. Whole gene expression profiling revealed the M-MSNs molecular modes of action in a time- and dose-dependent manner. The lowest dose tested (1.6 µg/cm2) induced no molecular effect and was defined as 'No Observed Transcriptional Effect level.' The dose 16 µg/cm2 revealed nascent but transient effects. At the highest dose (80 µg/cm2), adverse effects have clearly arisen and increased over time. The limit of biocompatibility for HepaRG cells could be set at 16 µg/cm2 for these NPs. Thanks to a comparative pathway-driven analysis, we highlighted the sequence of events that leads to the disruption of hepatobiliary system, elicited by the three types of M-MSNs, at the highest dose. The Adverse Outcome Pathway of hepatic cholestasis was implicated. Toxicogenomics applied to cell cultures is an effective tool to characterize and compare the modes of action of many substances. We propose this strategy as an asset for upstream selection of the safest nanocarriers in the framework of regulation for nanobiosafety.


Assuntos
Materiais Biocompatíveis/toxicidade , Portadores de Fármacos/toxicidade , Nanopartículas de Magnetita/toxicidade , Dióxido de Silício/toxicidade , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Perfilação da Expressão Gênica , Humanos , Lipídeos/química , Teste de Materiais , Microscopia Eletrônica de Transmissão , Tamanho da Partícula , Porosidade , Propriedades de Superfície , Transcriptoma/efeitos dos fármacos
13.
PLoS One ; 12(8): e0182906, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28796831

RESUMO

The formation of a protein corona around nanoparticles can influence their toxicity, triggering cellular responses that may be totally different from those elicited by pristine nanoparticles. The main objective of this study was to investigate whether the species origin of the serum proteins forming the corona influences the in vitro toxicity assessment of silica nanoparticles. Coronas were preformed around nanoparticles before cell exposures by incubation in fetal bovine (FBS) or human (HS) serum. The compositions of these protein coronas were assessed by nano-LC MS/MS. The effects of these protein-coated nanoparticles on HepG2 cells were monitored using real-time cell impedance technology. The nanoparticle coronas formed in human or fetal bovine serum comprised many homologous proteins. Using human compared with fetal bovine serum, nanoparticle toxicity in HepG2 cells decreased by 4-fold and 1.5-fold, when used at 50 and 10µg/mL, respectively. It is likely that "markers of self" are present in the serum and are recognized by human cell receptors. Preforming a corona with human serum seems to be more appropriate for in vitro toxicity testing of potential nanocarriers using human cells. In vitro cytotoxicity assays must reflect in vivo conditions as closely as possible to provide solid and useful results.


Assuntos
Proteínas Sanguíneas/análise , Meios de Cultura/química , Nanopartículas Metálicas , Dióxido de Silício , Animais , Bovinos , Células Hep G2 , Humanos , Especificidade da Espécie , Espectrometria de Massas em Tandem
14.
Int J Pharm ; 532(2): 790-801, 2017 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-28755992

RESUMO

Combined therapy is a global strategy developed to prevent drug resistance in cancer and infectious diseases. In this field, there is a need of multifunctional drug delivery systems able to co-encapsulate small drug molecules, peptides, proteins, associated to targeting functions, nanoparticles. Silylated hydrogels are alkoxysilane hybrid polymers that can be engaged in a sol-gel process, providing chemical cross linking in physiological conditions, and functionalized biocompatible hybrid materials. In the present work, microgels were prepared with silylated (hydroxypropyl)methyl cellulose (Si-HPMC) that was chemically cross linked in soft conditions of pH and temperature. They were prepared by an emulsion templating process, water in oil (W/O), as microreactors where the condensation reaction took place. The ability to functionalize the microgels, so-called FMGs, in a one-pot process, was evaluated by grafting a silylated hydrophilic model drug, fluorescein (Si-Fluor), using the same reaction of condensation. Biphasic microgels (BPMGs) were prepared to evaluate their potential to encapsulate lipophilic model drug (Nile red). They were composed of two separate compartments, one oily phase (sesame oil) trapped in the cross linked Si-HPMC hydrophilic phase. The FMGs and BPMGs were characterized by different microscopic techniques (optic, epi-fluorescence, Confocal Laser Scanning Microscopy and scanning electronic microscopy), the mechanical properties were monitored using nano indentation by Atomic Force Microscopy (AFM), and different preliminary tests were performed to evaluate their chemical and physical stability. Finally, it was demonstrated that it is possible to co-encapsulate both hydrophilic and hydrophobic drugs, in silylated microgels, that were physically and chemically stable. They were obtained by chemical cross linking in soft conditions, and without surfactant addition during the emulsification process. The amount of drug loaded was in favor of further biological activity. Mechanical stimulations should be necessary to trigger drug release.


Assuntos
Fluoresceína/química , Hidrogéis/química , Derivados da Hipromelose/química , Oxazinas/química , Propilaminas/química , Silanos/química , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Interações Hidrofóbicas e Hidrofílicas , Reologia , Óleo de Gergelim/química
15.
Biomater Sci ; 5(9): 1910-1921, 2017 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-28722044

RESUMO

In the context of regenerative medicine, the use of RNA interference mechanisms has already proven its efficiency in targeting specific gene expression with the aim of enhancing, accelerating or, more generally, directing stem cell differentiation. However, achievement of good transfection levels requires the use of a gene vector. For in vivo applications, synthetic vectors are an interesting option to avoid possible issues associated with viral vectors (safety, production costs, etc.). Herein, we report on the design of tripartite polyionic complex micelles as original non-viral polymeric vectors suited for mesenchymal stem cell transfection with siRNA. Three micelle formulations were designed to exhibit pH-triggered disassembly in an acidic pH range comparable to that of endosomes. One formulation was selected as the most promising with the highest siRNA loading capacity while clearly maintaining pH-triggered disassembly properties. A thorough investigation of the internalization pathway of micelles into cells with tagged siRNA was made before showing an efficient inhibition of Runx2 expression in primary bone marrow-derived stem cells. This work evidenced PIC micelles as promising synthetic vectors that allow efficient MSC transfection and control over their behavior, from the perspective of their clinical use.


Assuntos
Portadores de Fármacos/química , Células-Tronco Mesenquimais/metabolismo , Micelas , RNA Interferente Pequeno/genética , Transfecção/métodos , Animais , Sequência de Bases , Sobrevivência Celular/efeitos dos fármacos , Subunidade alfa 1 de Fator de Ligação ao Core/deficiência , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Portadores de Fármacos/metabolismo , Portadores de Fármacos/toxicidade , Endocitose , Camundongos
16.
Nanomaterials (Basel) ; 7(7)2017 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-28665317

RESUMO

The biological fate of nanoparticles (NPs) for biomedical applications is highly dependent of their size and charge, their aggregation state and their surface chemistry. The chemical composition of the NPs surface influences their stability in biological fluids, their interaction with proteins, and their attraction to the cell membranes. In this work, core-shell magnetic mesoporous silica nanoparticles (Fe3O4@MSN), that are considered as potential theranostic candidates, are coated with polyethylene glycol (PEG) or 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) lipid bilayer. Their biological fate is studied in comparison to the native NPs. The physicochemical properties of these three types of NPs and their suspension behavior in different media are investigated. The attraction to a membrane model is also evaluated using a supported lipid bilayer. The surface composition of NPs strongly influences their dispersion in biological fluids mimics, protein binding and their interaction with cell membrane. While none of these types of NPs is found to be toxic on mice four days after intravenous injection of a dose of 40 mg kg-1 of NPs, their surface coating nature influences the in vivo biodistribution. Importantly, NP coated with DMPC exhibit a strong accumulation in liver and a very low accumulation in lung in comparison with nude or PEG ones.

17.
Int J Pharm Investig ; 7(4): 155-163, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29692974

RESUMO

OBJECTIVE: EAPB0503, lead compound of imiqualines, presented high antitumor activities but also a very low water solubility which was critical for further preclinical studies. To apply to EAPB0503, a robust and safe lipid formulation already used for poor soluble anticancer agents for injectable administration at a concentration higher than 1 mg/mL. MATERIALS AND METHODS: Physicochemical properties of EAPB0503 were determined to consider an adapted formulation. In a second time, lipid nanocapsules (LNC) formulations based on the phase-inversion process were developed for EAPB0503 encapsulation. Then, EAPB0503 loaded-LNC were tested in vitro on different cell lines and compared to standard EAPB0503 solutions. RESULTS: Optimized EAPB0503 LNC displayed an average size of 111.7 ± 0.9 nm and a low polydispersity index of 0.059 ± 0.002. The obtained loading efficiency was higher than 96% with a drug loading of 1.7 mg/mL. A stability study showed stability during 4 weeks stored at 25°C. In vitro results highlighted similar efficiencies between LNC and standard EAPB0503 solutions prepared in dimethyl sulfoxide. CONCLUSION: In view of results obtained for loading efficiency and drug loading, the use of a LNC formulation is very interesting to permit the solubilization of a lipophilic drug and to improve its bioavailability. Preliminary tested pharmaceutical formulation applied to EAPB0503 significantly improved its water solubility and will be soon considered for future preclinical in vivo studies.

18.
Nanoscale ; 9(5): 1840-1851, 2017 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-27858044

RESUMO

Magnetic mesoporous silica nanoparticles (M-MSNs) represent promising targeting tools for theranostics. Engineering the interaction of nanoparticles (NPs) with biological systems requires an understanding of protein corona formation around the nanoparticles as this drives the biological fate of nanocarriers. We investigated the behavior of proteins in contact with M-MSNs by high-throughput comparative proteomics, using human and bovine sera as biological fluids, in order to assess the adsorption dynamics of proteins in these media. Using system biology tools, and especially protein-protein interaction databases, we demonstrated how the protein network builds up within the corona over the course of the experiment. Based on these results, we introduce and discuss the role of the "corona interactome" as an important factor influencing protein corona evolution. The concept of the "corona interactome" is an original methodology which could be generalized to all NP candidates. Based on this, pre-coating nanocarriers with specific proteins presenting minimal interactions with opsonins might provide them with properties such as stealth.


Assuntos
Nanopartículas , Coroa de Proteína/química , Dióxido de Silício , Adsorção , Animais , Bovinos , Humanos , Mapas de Interação de Proteínas , Soro , Biologia de Sistemas
19.
Nanoscale ; 8(9): 4780-98, 2016 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-26868717

RESUMO

Over the past two decades, numerous types of nanoparticles (NPs) have been developed for medical applications; however only a few nanomedicines are actually available on the market. One reason is the lack of understanding and data concerning the NP fate and their behavior upon contact with biological media and cell membranes. Biomimetic membrane models are interesting tools to approach and understand NPs-cell membrane interactions. The use of these models permits one to control physical and chemical parameters and to rapidly compare membrane types and the influence of different media conditions. The interactions between NPs and cell membranes can be qualified and quantified using analytical and modeling methods. In this review, the major studies concerning NPs-cell membrane models and associated methods are described. The advantages and drawbacks for each method are compared for the different models. The key mechanisms of interactions between NPs and cell membranes are revealed using cell membrane models and are interrogated in comparison with the NP behavior in cellulo or in vivo. Investigating the interactions between NPs and cell membrane models is now proposed as an intermediate step between physicochemical characterization of NPs and biological assays.


Assuntos
Membrana Celular/química , Membranas Artificiais , Modelos Químicos , Nanopartículas/química , Animais , Humanos , Retratos como Assunto
20.
Int J Pharm ; 502(1-2): 117-24, 2016 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-26836707

RESUMO

Lithium biocompatible microemulsion based on Peceol(®), lecithin, ethanol and water was studied in attempt to identify the optimal compositions in term of drug content, physicochemical properties and stability. Lithium solubilization in microemulsion was found to be compatible with a drug-surfactant binding model. Lithium ions were predominantly solubilized within lecithin head group altering significantly the interfacial properties of the system. Pseudo-ternary phase diagrams of drug free and drug loaded microemulsions were built at constant ethanol/lecithin weight ratio (40/60). Lithium loaded microemulsion has totally disappeared in the Peceol(®) rich part of phase diagram; critical fractions of lecithin and ethanol were required for the formation of stable microemulsion. The effect of lithium concentration on the properties and physical stability of microemulsions were studied using microscopy, Karl Fischer titrations, rheology analyses, conductivity measurements and centrifugation tests. The investigated microemulsions were found to be stable under accelerated storage conditions. The systems exhibited low viscosity and behaved as Newtonian fluid and no structural transition was shown.


Assuntos
Citratos/química , Química Farmacêutica , Estabilidade de Medicamentos , Emulsões , Etanol/química , Excipientes/química , Lecitinas/química , Ácidos Oleicos/química , Solubilidade , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA