Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 350
Filtrar
1.
Kidney360 ; 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38556647

RESUMO

BACKGROUND: The management of autosomal dominant polycystic kidney disease (ADPKD) remains challenging with variable and uncertain genotype-phenotype correlations. The Mayo clinic imaging classification allows a more accurate risk stratification but is limited by the atypical imaging patterns. We aim to assess the clinical characteristics and the morphology of the cystic kidneys in a cohort of Chinese patients with ADPKD. METHOD: Ninety-eight patients with ADPKD were recruited prospectively from August 2019 to December 2020 in Prince of Wales Hospital, Hong Kong. They were subsequently followed up every 6 months for a minimum of2 years. We reviewed the clinical characteristics and MRI imaging patterns at baseline and the kidney outcome at the end of the follow-up. Atypical imaging patterns included unilateral; segmental; asymmetric; lopsided and bilateral atrophy as defined by the Mayo Imaging Classification. RESULT: Mean age was 51.5 ± 14.3 years old and the mean eGFR 68.7 ± 27.5 ml/min per 1.73 m2. The ninety-eight patients included 36 males:62 females. Seventy-six patients (77.6%) had a family history. Seventeen of the 98 (17.3%) patients had atypical imaging patterns. Compared to typical cases, atypical cases were older at the time of diagnosis (49.5 ± 16.0 vs 33.0 ± 13.0 years, p<0.001), at the time of starting antihypertensive medications (52.4 ± 14.8 vs 39.7 ± 11.0 years, p=0.001) and less likely to have a positive family history (58.8% vs 81.5%, p=0.042). Patients with atypical patterns showed a lower eGFR decline as compared to those with the typical pattern (-0.86 ± 4.34 vs -3.44 ± 4.07 ml/min per 1.73m2/year, p=0.022). CONCLUSION: In this cohort of Chinese patients with ADPKD, an atypical imaging pattern was observed in 17% of the cases, associated with later presentation and a milder disease course. Future genotyping studies will help to define the genetic architecture and the basis for the phenotypic spectrum in Chinese ADPKD patients.

2.
Front Immunol ; 15: 1373224, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38633264

RESUMO

Cystinosis is a rare autosomal recessive disorder caused by mutations in the CTNS gene that encodes cystinosin, a ubiquitous lysosomal cystine/H+ antiporter. The hallmark of the disease is progressive accumulation of cystine and cystine crystals in virtually all tissues. At the kidney level, human cystinosis is characterized by the development of renal Fanconi syndrome and progressive glomerular and interstitial damage leading to end-stage kidney disease in the second or third decade of life. The exact molecular mechanisms involved in the pathogenesis of renal disease in cystinosis are incompletely elucidated. We have previously shown upregulation of NLRP2 in human cystinotic proximal tubular epithelial cells and its role in promoting inflammatory and profibrotic responses. Herein, we have investigated the role of NLRP2 in vivo using a mouse model of cystinosis in which we have confirmed upregulation of Nlrp2 in the renal parenchyma. Our studies show that double knock out Ctns-/- Nlrp2-/- animals exhibit delayed development of Fanconi syndrome and kidney tissue damage. Specifically, we observed at 4-6 months of age that animals had less glucosuria and calciuria and markedly preserved renal tissue, as assessed by significantly lower levels of inflammatory cell infiltration, tubular atrophy, and interstitial fibrosis. Also, the mRNA expression of some inflammatory mediators (Cxcl1 and Saa1) and the rate of apoptosis were significantly decreased in 4-6-month old kidneys harvested from Ctns-/- Nlrp2-/- mice compared to those obtained from Ctns-/-mice. At 12-14 months of age, renal histological was markedly altered in both genetic models, although double KO animals had lower degree of polyuria and low molecular weight proteinuria and decreased mRNA expression levels of Il6 and Mcp1. Altogether, these data indicate that Nlrp2 is a potential pharmacological target for delaying progression of kidney disease in cystinosis.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Proteínas Reguladoras de Apoptose , Cistinose , Nefropatias , Animais , Cistina/metabolismo , Cistinose/genética , Cistinose/metabolismo , Cistinose/patologia , Rim/patologia , Nefropatias/patologia , RNA Mensageiro , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Modelos Animais de Doenças , Camundongos
3.
Nat Rev Nephrol ; 20(6): 402-420, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38443710

RESUMO

Tuberous sclerosis complex (TSC) is an autosomal dominant disorder characterized by the presence of proliferative lesions throughout the body. Management of TSC is challenging because patients have a multifaceted systemic illness with prominent neurological and developmental impact as well as potentially severe kidney, heart and lung phenotypes; however, every organ system can be involved. Adequate care for patients with TSC requires a coordinated effort involving a multidisciplinary team of clinicians and support staff. This clinical practice recommendation was developed by nephrologists, urologists, paediatric radiologists, interventional radiologists, geneticists, pathologists, and patient and family group representatives, with a focus on TSC-associated kidney manifestations. Careful monitoring of kidney function and assessment of kidney structural lesions by imaging enable early interventions that can preserve kidney function through targeted approaches. Here, we summarize the current evidence and present recommendations for the multidisciplinary management of kidney involvement in TSC.


Assuntos
Esclerose Tuberosa , Esclerose Tuberosa/genética , Esclerose Tuberosa/terapia , Esclerose Tuberosa/complicações , Humanos , Consenso , Angiomiolipoma/genética , Angiomiolipoma/etiologia , Guias de Prática Clínica como Assunto
4.
Kidney Int Rep ; 9(3): 549-568, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38481491

RESUMO

Monogenic kidney diseases are involved in up to 15% of end-stage kidney diseases (ESKDs) in adults, and in 70 % of pediatric patients. When these disorders lead to kidney failure (KF), kidney transplantation (KT) is the preferred mode of replacement therapy. KT requires specific considerations depending on the nature of the genetic disorder, the potential oncological risk, the risk of recurrence in the graft, the possibility of specific complications of immunosuppression, and the issue of living donation. The availability of genetic testing should play an increasing role in the evaluation of patients or related living donor candidates before transplantation, relevant for the pretransplantation and posttransplantation management.

5.
Kidney Int Rep ; 9(2): 249-256, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38344736

RESUMO

Introduction: Accurate tools to inform individual prognosis in patients with autosomal dominant polycystic kidney disease (ADPKD) are lacking. Here, we report an artificial intelligence (AI)-generated method for routinely measuring total kidney volume (TKV). Methods: An ensemble U-net algorithm was created using the nnUNet approach. The training and internal cross-validation cohort consisted of all 1.5T magnetic resonance imaging (MRI) data acquired using 5 different MRI scanners (454 kidneys, 227 scans) in the CYSTic consortium, which was first manually segmented by a single human operator. As an independent validation cohort, we utilized 48 sequential clinical MRI scans with reference results of manual segmentation acquired by 6 individual analysts at a single center. The tool was then implemented for clinical use and its performance analyzed. Results: The training or internal validation cohort was younger (mean age 44.0 vs. 51.5 years) and the female-to-male ratio higher (1.2 vs. 0.94) compared to the clinical validation cohort. The majority of CYSTic patients had PKD1 mutations (79%) and typical disease (Mayo Imaging class 1, 86%). The median DICE score on the clinical validation data set between the algorithm and human analysts was 0.96 for left and right kidneys with a median TKV error of -1.8%. The time taken to manually segment kidneys in the CYSTic data set was 56 (±28) minutes, whereas manual corrections of the algorithm output took 8.5 (±9.2) minutes per scan. Conclusion: Our AI-based algorithm demonstrates performance comparable to manual segmentation. Its rapidity and precision in real-world clinical cases demonstrate its suitability for clinical application.

6.
Autophagy ; 20(1): 202-204, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37621073

RESUMO

Differentiation and fate decisions are critical for the epithelial cells lining the proximal tubule (PT) of the kidney, but the signals involved remain unknown. Defective cystine mobilization from lysosomes through CTNS (cystinosin, lysosomal cystine transporter), which is mutated in cystinosis, triggers the dedifferentiation and dysfunction of the PT cells, causing kidney disease and severe metabolic complications. Using preclinical models and physiologically relevant cellular systems, along with functional assays and a generative artificial intelligence (AI)-powered engine, we found that cystine storage imparted by CTNS deficiency stimulates Ragulator-RRAG GTPase-dependent recruitment of MTORC1 and its constitutive activation. In turn, this diverts the catabolic trajectories and differentiating states of PT cells toward growth and proliferation, disrupting homeostasis and their specialized functions. Therapeutic MTORC1 inhibition by using low doses of rapamycin corrects lysosome function and differentiation downstream of cystine storage and ameliorates PT dysfunction in preclinical models of cystinosis. These discoveries suggest that cystine may act as a lysosomal fasting signal that tailors MTORC1 signaling to direct fate decisions in the kidney PT epithelium, highlighting novel therapeutic paradigms for cystinosis and other lysosome-related disorders.


Assuntos
Sistemas de Transporte de Aminoácidos Neutros , Cistinose , Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Inteligência Artificial , Autofagia , Cistina/metabolismo , Cistinose/metabolismo , Células Epiteliais/metabolismo , Lisossomos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo
9.
Kidney Int ; 104(6): 1073-1075, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37981431
10.
EMBO Mol Med ; 15(12): e18242, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-37885358

RESUMO

Missense mutations in the uromodulin (UMOD) gene cause autosomal dominant tubulointerstitial kidney disease (ADTKD), one of the most common monogenic kidney diseases. The unknown impact of the allelic and gene dosage effects and fate of mutant uromodulin leaves open the gap between postulated gain-of-function mutations, end-organ damage and disease progression in ADTKD. Based on two prevalent missense UMOD mutations with divergent disease progression, we generated UmodC171Y and UmodR186S knock-in mice that showed strong allelic and gene dosage effects on uromodulin aggregates and activation of ER stress and unfolded protein and immune responses, leading to variable kidney damage. Deletion of the wild-type Umod allele in heterozygous UmodR186S mice increased the formation of uromodulin aggregates and ER stress. Studies in kidney tubular cells confirmed differences in uromodulin aggregates, with activation of mutation-specific quality control and clearance mechanisms. Enhancement of autophagy by starvation and mTORC1 inhibition decreased uromodulin aggregates. These studies substantiate the role of toxic aggregates as driving progression of ADTKD-UMOD, relevant for therapeutic strategies to improve clearance of mutant uromodulin.


Assuntos
Nefropatias , Rim , Animais , Camundongos , Alelos , Progressão da Doença , Rim/metabolismo , Nefropatias/genética , Mutação , Uromodulina/genética , Uromodulina/metabolismo
11.
Nat Commun ; 14(1): 3994, 2023 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-37452023

RESUMO

Differentiation is critical for cell fate decisions, but the signals involved remain unclear. The kidney proximal tubule (PT) cells reabsorb disulphide-rich proteins through endocytosis, generating cystine via lysosomal proteolysis. Here we report that defective cystine mobilization from lysosomes through cystinosin (CTNS), which is mutated in cystinosis, diverts PT cells towards growth and proliferation, disrupting their functions. Mechanistically, cystine storage stimulates Ragulator-Rag GTPase-dependent recruitment of mechanistic target of rapamycin complex 1 (mTORC1) and its constitutive activation. Re-introduction of CTNS restores nutrient-dependent regulation of mTORC1 in knockout cells, whereas cell-permeant analogues of L-cystine, accumulating within lysosomes, render wild-type cells resistant to nutrient withdrawal. Therapeutic mTORC1 inhibition corrects lysosome and differentiation downstream of cystine storage, and phenotypes in preclinical models of cystinosis. Thus, cystine serves as a lysosomal signal that tailors mTORC1 and metabolism to direct epithelial cell fate decisions. These results identify mechanisms and therapeutic targets for dysregulated homeostasis in cystinosis.


Assuntos
Sistemas de Transporte de Aminoácidos Neutros , Cistinose , Humanos , Cistina/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Rim/metabolismo , Células Epiteliais/metabolismo , Lisossomos/metabolismo , Sistemas de Transporte de Aminoácidos Neutros/genética
13.
N Engl J Med ; 388(13): e47, 2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-36988609

Assuntos
Gota , Humanos
15.
Biomedicines ; 11(2)2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36831047

RESUMO

Vesicoureteral reflux (VUR) is associated with urinary tract infections (UTI) and renal scars. The kidney damage is correlated with the grade of reflux and the number of UTI, but other factors may also play a role. Uromodulin (UMOD) is a protein produced by kidney tubular cells, forming a matrix in the lumen. We evaluated whether the common variant rs4293393 in the UMOD gene was associated with febrile UTI (FUTI) and/or scars in a group of children with VUR. A total of 31 patients with primary VUR were enrolled. Renal scars were detected in 16 children; no scar was detected in 15 children. Genotype rs4293393 TC (TC) was present in 8 patients, 7 (88%) had scars; genotype rs4293393 TT (TT) was found in 23 patients, and 9 (39%) had scars. Among children with scars, those with TC compared with those with TT were younger (mean age 77 vs. 101 months), their reflux grade was comparable (3.7 vs. 3.9), and the number of FUTI was lower (2.9 vs. 3.7 per patient). Children with VUR carrying UMOD genotype rs4293393 TC seem more prone to developing renal scars, independent of FUTI.

16.
Nephrol Dial Transplant ; 38(6): 1408-1420, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-36520078

RESUMO

BACKGROUND: The water channels aquaporin-1 (AQP1) and AQP7 are abundantly expressed in the peritoneal membrane. While AQP1 facilitates water transport during peritoneal dialysis (PD), the role of AQP7, which mediates glycerol transport during fasting, remains unknown. METHODS: We investigated the distribution of AQP7 and AQP1 and used a mouse model of PD to investigate the role of AQP7 in the peritoneal membrane at baseline and after fasting. RESULTS: Single nucleus RNA-sequencing revealed that AQP7 was mostly detected in mature adipocytes, whereas AQP1 was essentially expressed in endothelial cells. Fasting induced significant decreases in whole body fat, plasma glucose, insulin and triglycerides, as well as higher plasma glycerol and corticosterone levels in mice, paralleled by major decreases in adipocyte size and levels of fatty acid synthase and leptin, and increased levels of hormone-sensitive lipase mRNAs in the peritoneum. Mechanistically, fasting upregulated the expression of AQP1 and AQP7 in the peritoneum, with increased ultrafiltration but no change in small solute transport. Studies based on Aqp1 and Aqp7 knockout mice and RU-486 inhibition demonstrated that the glucocorticoid induction of AQP1 mediates the increase in ultrafiltration whereas AQP7 regulates the size of adipocytes in the peritoneum. CONCLUSIONS: Fasting induces a coordinated regulation of lipolytic and lipogenic factors and aqua(glycero)porins in the peritoneum, driving structural and functional changes. These data yield novel information on the specific roles of aquaporins in the peritoneal membrane and indicate that fasting improves fluid removal in a mouse model of PD.


Assuntos
Glicerol , Peritônio , Animais , Camundongos , Peritônio/metabolismo , Glicerol/metabolismo , Células Endoteliais/metabolismo , Aquaporina 1/genética , Adipócitos/metabolismo , Água/metabolismo , Camundongos Knockout , Jejum
18.
Nephrol Dial Transplant ; 38(1): 70-79, 2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-35612992

RESUMO

BACKGROUND: The progression of chronic kidney disease (CKD), a global public health burden, is accompanied by a declining number of functional nephrons. Estimation of remaining nephron mass may improve assessment of CKD progression. Uromodulin has been suggested as a marker of tubular mass. We aimed to identify metabolites associated with uromodulin concentrations in urine and serum to characterize pathophysiologic alterations of metabolic pathways to generate new hypotheses regarding CKD pathophysiology. METHODS: We measured urinary and serum uromodulin levels (uUMOD, sUMOD) and 607 urinary metabolites and performed cross-sectional analyses within the German Chronic Kidney Disease study (N = 4628), a prospective observational study. Urinary metabolites significantly associated with uUMOD and sUMOD were used to build weighted metabolite scores for urine (uMS) and serum uromodulin (sMS) and evaluated for time to adverse kidney events over 6.5 years. RESULTS: Metabolites cross-sectionally associated with uromodulin included amino acids of the tryptophan metabolism, lipids and nucleotides. Higher levels of the sMS [hazard ratio (HR) = 0.73 (95% confidence interval 0.64; 0.82), P = 7.45e-07] and sUMOD [HR = 0.74 (95% confidence interval 0.63; 0.87), P = 2.32e-04] were associated with a lower risk of adverse kidney events over time, whereas uUMOD and uMS showed the same direction of association but were not significant. CONCLUSIONS: We identified urinary metabolites associated with urinary and serum uromodulin. The sUMOD and the sMS were associated with lower risk of adverse kidney events among CKD patients. Higher levels of sUMOD and sMS may reflect a higher number of functional nephrons and therefore a reduced risk of adverse kidney outcomes.


Assuntos
Insuficiência Renal Crônica , Humanos , Uromodulina , Estudos Transversais , Taxa de Filtração Glomerular/fisiologia , Insuficiência Renal Crônica/complicações , Rim , Biomarcadores
19.
Kidney Int ; 102(6): 1206-1208, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36411013
20.
Proc Natl Acad Sci U S A ; 119(33): e2114734119, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35947615

RESUMO

The kidney-specific gene UMOD encodes for uromodulin, the most abundant protein excreted in normal urine. Rare large-effect variants in UMOD cause autosomal dominant tubulointerstitial kidney disease (ADTKD), while common low-impact variants strongly associate with kidney function and the risk of chronic kidney disease (CKD) in the general population. It is unknown whether intermediate-effect variants in UMOD contribute to CKD. Here, candidate intermediate-effect UMOD variants were identified using large-population and ADTKD cohorts. Biological and phenotypical effects were investigated using cell models, in silico simulations, patient samples, and international databases and biobanks. Eight UMOD missense variants reported in ADTKD are present in the Genome Aggregation Database (gnomAD), with minor allele frequency (MAF) ranging from 10-5 to 10-3. Among them, the missense variant p.Thr62Pro is detected in ∼1/1,000 individuals of European ancestry, shows incomplete penetrance but a high genetic load in familial clusters of CKD, and is associated with kidney failure in the 100,000 Genomes Project (odds ratio [OR] = 3.99 [1.84 to 8.98]) and the UK Biobank (OR = 4.12 [1.32 to 12.85). Compared with canonical ADTKD mutations, the p.Thr62Pro carriers displayed reduced disease severity, with slower progression of CKD and an intermediate reduction of urinary uromodulin levels, in line with an intermediate trafficking defect in vitro and modest induction of endoplasmic reticulum (ER) stress. Identification of an intermediate-effect UMOD variant completes the spectrum of UMOD-associated kidney diseases and provides insights into the mechanisms of ADTKD and the genetic architecture of CKD.


Assuntos
Insuficiência Renal Crônica , Uromodulina , Heterozigoto , Humanos , Mutação , Insuficiência Renal Crônica/genética , Uromodulina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA