Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38659896

RESUMO

Bloom Syndrome helicase (Blm) is a RecQ family helicase involved in DNA repair, cell-cycle progression, and development. Pathogenic variants in human BLM cause the autosomal recessive disorder Bloom Syndrome, characterized by predisposition to numerous types of cancer. Prior studies of Drosophila Blm mutants lacking helicase activity or protein have shown sensitivity to DNA damaging agents, defects in repairing DNA double-strand breaks (DSBs), female sterility, and improper segregation of chromosomes in meiosis. Blm orthologs have a well conserved and highly structured RecQ helicase domain, but more than half of the protein, particularly in the N-terminus, is predicted to be unstructured. Because this region is poorly conserved across multicellular organisms, we compared closely related species to identify regions of conservation, potentially indicating important functions. We deleted two of these Drosophila-conserved regions in D. melanogaster using CRISPR/Cas9 gene editing and assessed the effects on different Blm functions. Each deletion had distinct effects on different Blm activities. Deletion of either conserved region 1 (CR1) or conserved region 2 (CR2) compromised DSB repair through synthesis-dependent strand annealing and resulted in increased mitotic crossovers. In contrast, CR2 is critical for embryonic development but CR1 is not as important. CR1 deletion allows for proficient meiotic chromosome segregation but does lead to defects in meiotic crossover designation and patterning. Finally, deletion of CR2 does not lead to significant meiotic defects, indicating that while each region has overlapping functions, there are discreet roles facilitated by each. These results provide novel insights into functions of the N-terminal disordered region of Blm.

2.
Nucleic Acids Res ; 52(2): 677-689, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-37994737

RESUMO

After reconstitution of nucleotide excision repair (excision repair) with XPA, RPA, XPC, TFIIH, XPF-ERCC1 and XPG, it was concluded that these six factors are the minimal essential components of the excision repair machinery. All six factors are highly conserved across diverse organisms spanning yeast to humans, yet no identifiable homolog of the XPA gene exists in many eukaryotes including green plants. Nevertheless, excision repair is reported to be robust in the XPA-lacking organism, Arabidopsis thaliana, which raises a fundamental question of whether excision repair could occur without XPA in other organisms. Here, we performed a phylogenetic analysis of XPA across all species with annotated genomes and then quantitatively measured excision repair in the absence of XPA using the sensitive whole-genome qXR-Seq method in human cell lines and two model organisms, Caenorhabditis elegans and Drosophila melanogaster. We find that although the absence of XPA results in inefficient excision repair and UV-sensitivity in humans, flies, and worms, excision repair of UV-induced DNA damage is detectable over background. These studies have yielded a significant discovery regarding the evolution of XPA protein and its mechanistic role in nucleotide excision repair.


Assuntos
Reparo por Excisão , Proteína de Xeroderma Pigmentoso Grupo A , Animais , Humanos , Dano ao DNA , Reparo do DNA , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Drosophila melanogaster/metabolismo , Nucleotídeos/metabolismo , Filogenia , Proteína de Xeroderma Pigmentoso Grupo A/genética , Proteína de Xeroderma Pigmentoso Grupo A/metabolismo , Plantas/metabolismo , Evolução Molecular
3.
Genetics ; 223(1)2023 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-36303322

RESUMO

Proper repair of DNA double-strand breaks is essential to the maintenance of genomic stability and avoidance of genetic disease. Organisms have many ways of repairing double-strand breaks, including the use of homologous sequences through homology-directed repair. While homology-directed repair is often error free, in single-strand annealing homologous repeats flanking a double-strand break are annealed to one another, leading to the deletion of one repeat and the intervening sequences. Studies in yeast have shown a relationship between the length of the repeat and single-strand annealing efficacy. We sought to determine the effects of homology length on single-strand annealing in Drosophila, as Drosophila uses a different annealing enzyme (Marcal1) than yeast. Using an in vivo single-strand annealing assay, we show that 50 base pairs are insufficient to promote single-strand annealing and that 500-2,000 base pairs are required for maximum efficiency. Loss of Marcal1 generally followed the same homology length trend as wild-type flies, with single-strand annealing frequencies reduced to about a third of wild-type frequencies regardless of homology length. Interestingly, we find a difference in single-strand annealing rates between 500-base pair homologies that align to the annealing target either nearer or further from the double-strand break, a phenomenon that may be explained by Marcal1 dynamics. This study gives insights into Marcal1 function and provides important information to guide the design of genome engineering strategies that use single-strand annealing to integrate linear DNA constructs into a chromosomal double-strand break.


Assuntos
Reparo do DNA , Drosophila , Animais , Drosophila/genética , Saccharomyces cerevisiae/genética , Quebras de DNA de Cadeia Dupla , DNA
4.
Proc Natl Acad Sci U S A ; 119(9)2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35217627

RESUMO

Drosophila melanogaster has been extensively used as a model system to study ionizing radiation and chemical-induced mutagenesis, double-strand break repair, and recombination. However, there are only limited studies on nucleotide excision repair in this important model organism. An early study reported that Drosophila lacks the transcription-coupled repair (TCR) form of nucleotide excision repair. This conclusion was seemingly supported by the Drosophila genome sequencing project, which revealed that Drosophila lacks a homolog to CSB, which is known to be required for TCR in mammals and yeasts. However, by using excision repair sequencing (XR-seq) genome-wide repair mapping technology, we recently found that the Drosophila S2 cell line performs TCR comparable to human cells. Here, we have extended this work to Drosophila at all its developmental stages. We find TCR takes place throughout the life cycle of the organism. Moreover, we find that in contrast to humans and other multicellular organisms previously studied, the XPC repair factor is required for both global and transcription-coupled repair in Drosophila.


Assuntos
Reparo do DNA , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Transcrição Gênica , Animais , Linhagem Celular , Cisplatino/farmacologia , DNA/efeitos dos fármacos , DNA/efeitos da radiação , Raios Ultravioleta
5.
Sci Rep ; 10(1): 20165, 2020 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-33214581

RESUMO

Epithelia are an eminent tissue type and a common driver of tumorigenesis, requiring continual precision in cell division to maintain tissue structure and genome integrity. Mitotic defects often trigger apoptosis, impairing cell viability as a tradeoff for tumor suppression. Identifying conditions that lead to cell death and understanding the mechanisms behind this response are therefore of considerable importance. Here we investigated how epithelia of the Drosophila wing disc respond to loss of Short stop (Shot), a cytoskeletal crosslinking spectraplakin protein that we previously found to control mitotic spindle assembly and chromosome dynamics. In contrast to other known spindle-regulating genes, Shot knockdown induces apoptosis in the absence of Jun kinase (JNK) activation, but instead leads to elevated levels of active p38 kinase. Shot loss leads to double-strand break (DSB) DNA damage, and the apoptotic response is exacerbated by concomitant loss of p53. DSB accumulation is increased by suppression of the spindle assembly checkpoint, suggesting this effect results from chromosome damage during error-prone mitoses. Consistent with DSB induction, we found that the DNA damage and stress response genes, Growth arrest and DNA damage (GADD45) and Apoptosis signal-regulating kinase 1 (Ask1), are transcriptionally upregulated as part of the shot-induced apoptotic response. Finally, co-depletion of Shot and GADD45 induced significantly higher rates of chromosome segregation errors in cultured cells and suppressed shot-induced mitotic arrest. Our results demonstrate that epithelia are capable of mounting molecularly distinct responses to loss of different spindle-associated genes and underscore the importance of proper cytoskeletal organization in tissue homeostasis.


Assuntos
Dano ao DNA/fisiologia , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Proteínas dos Microfilamentos/genética , Asas de Animais/fisiologia , Animais , Animais Geneticamente Modificados , Apoptose/genética , Células Cultivadas , Segregação de Cromossomos , Quebras de DNA de Cadeia Dupla , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citologia , Células Epiteliais/fisiologia , Epitélio , Peptídeos e Proteínas de Sinalização Intracelular/genética , Larva/genética , MAP Quinase Quinase Quinases/genética , MAP Quinase Quinase Quinases/metabolismo , Mitose , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Proteínas GADD45
6.
J Vis Exp ; (150)2019 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-31498327

RESUMO

Drosophila S2 cells are an important tool in studying mitosis in tissue culture, providing molecular insights into this fundamental cellular process in a rapid and high-throughput manner. S2 cells have proven amenable to both fixed- and live-cell imaging applications. Notably, live-cell imaging can yield valuable information about how loss or knockdown of a gene can affect the kinetics and dynamics of key events during cell division, including mitotic spindle assembly, chromosome congression, and segregation, as well as overall cell cycle timing. Here we utilize S2 cells stably transfected with fluorescently tagged mCherry:α-tubulin to mark the mitotic spindle and GFP:CENP-A (referred to as 'CID' gene in Drosophila) to mark the centromere to analyze the effects of key mitotic genes on the timing of cell divisions, from prophase (specifically at Nuclear Envelope Breakdown; NEBD) to the onset of anaphase. This imaging protocol also allows for the visualization of the spindle microtubule and chromosome dynamics throughout mitosis. Herein, we aim to provide a simple yet comprehensive protocol that will allow readers to easily adapt S2 cells for live imaging experiments. Results obtained from such experiments should expand our understanding of genes involved in the cell division by defining their role in several simultaneous and dynamic events. Observations made in this cell culture system can be validated and further investigated in vivo using the impressive toolkit of genetic approaches in flies.


Assuntos
Drosophila/citologia , Mitose , Animais , Linhagem Celular , Centrômero , Segregação de Cromossomos , Processamento de Imagem Assistida por Computador , Microtúbulos/metabolismo , Prófase , Fuso Acromático/metabolismo , Tubulina (Proteína)/metabolismo
7.
Mol Biol Cell ; 28(19): 2555-2568, 2017 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-28747439

RESUMO

Proper assembly and orientation of the bipolar mitotic spindle is critical to the fidelity of cell division. Mitotic precision fundamentally contributes to cell fate specification, tissue development and homeostasis, and chromosome distribution within daughter cells. Defects in these events are thought to contribute to several human diseases. The underlying mechanisms that function in spindle morphogenesis and positioning remain incompletely defined, however. Here we describe diverse roles for the actin-microtubule cross-linker Shortstop (Shot) in mitotic spindle function in Drosophila Shot localizes to mitotic spindle poles, and its knockdown results in an unfocused spindle pole morphology and a disruption of proper spindle orientation. Loss of Shot also leads to chromosome congression defects, cell cycle progression delay, and defective chromosome segregation during anaphase. These mitotic errors trigger apoptosis in Drosophila epithelial tissue, and blocking this apoptotic response results in a marked induction of the epithelial-mesenchymal transition marker MMP-1. The actin-binding domain of Shot directly interacts with Actin-related protein-1 (Arp-1), a key component of the Dynein/Dynactin complex. Knockdown of Arp-1 phenocopies Shot loss universally, whereas chemical disruption of F-actin does so selectively. Our work highlights novel roles for Shot in mitosis and suggests a mechanism involving Dynein/Dynactin activation.


Assuntos
Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/fisiologia , Proteínas dos Microfilamentos/metabolismo , Proteínas dos Microfilamentos/fisiologia , Actinas/metabolismo , Anáfase , Animais , Ciclo Celular , Cromossomos/metabolismo , Citoesqueleto/patologia , Drosophila/metabolismo , Proteínas de Drosophila/genética , Complexo Dinactina/metabolismo , Dineínas/metabolismo , Proteínas dos Microfilamentos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Mitose/fisiologia , Ligação Proteica , Fuso Acromático/metabolismo
9.
Curr Biol ; 25(21): 2751-2762, 2015 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-26592339

RESUMO

Multicellular animals have evolved conserved signaling pathways that translate cell polarity cues into mitotic spindle positioning to control the orientation of cell division within complex tissue structures. These oriented cell divisions are essential for the development of cell diversity and the maintenance of tissue homeostasis. Despite intense efforts, the molecular mechanisms that control spindle orientation remain incompletely defined. Here, we describe a role for the Hippo (Hpo) kinase complex in promoting Partner of Inscuteable (Pins)-mediated spindle orientation. Knockdown of Hpo, Salvador (Sav), or Warts (Wts) each result in a partial loss of spindle orientation, a phenotype previously described following loss of the Pins-binding protein Mushroom body defect (Mud). Similar to orthologs spanning yeast to mammals, Wts kinase localizes to mitotic spindle poles, a prominent site of Mud localization. Wts directly phosphorylates Mud in vitro within its C-terminal coiled-coil domain. This Mud coiled-coil domain directly binds the adjacent Pins-binding domain to dampen the Pins/Mud interaction, and Wts-mediated phosphorylation uncouples this intramolecular Mud interaction. Loss of Wts prevents cortical Pins/Mud association without affecting Mud accumulation at spindle poles, suggesting phosphorylation acts as a molecular switch to specifically activate cortical Mud function. Finally, loss of Wts in Drosophila imaginal disc epithelial cells results in diminished cortical Mud and defective planar spindle orientation. Our results provide new insights into the molecular basis for dynamic regulation of the cortical Pins/Mud spindle positioning complex and highlight a novel link with an essential, evolutionarily conserved cell proliferation pathway.


Assuntos
Divisão Celular/genética , Proteínas de Drosophila/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Quinases/metabolismo , Fuso Acromático/metabolismo , Transativadores/metabolismo , Animais , Polaridade Celular/fisiologia , Drosophila , Drosophila melanogaster , Inibidores de Dissociação do Nucleotídeo Guanina/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Fosforilação , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Fuso Acromático/genética , Proteínas de Sinalização YAP
10.
J Dev Biol ; 3(4): 129-157, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26844213

RESUMO

The ability to dictate cell fate decisions is critical during animal development. Moreover, faithful execution of this process ensures proper tissue homeostasis throughout adulthood, whereas defects in the molecular machinery involved may contribute to disease. Evolutionarily conserved protein complexes control cell fate decisions across diverse tissues. Maintaining proper daughter cell inheritance patterns of these determinants during mitosis is therefore a fundamental step of the cell fate decision-making process. In this review, we will discuss two key aspects of this fate determinant segregation activity, cortical cell polarity and mitotic spindle orientation, and how they operate together to produce oriented cell divisions that ultimately influence daughter cell fate. Our focus will be directed at the principal underlying molecular mechanisms and the specific cell fate decisions they have been shown to control.

11.
PLoS One ; 9(12): e114235, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25461409

RESUMO

Communication between cortical cell polarity cues and the mitotic spindle ensures proper orientation of cell divisions within complex tissues. Defects in mitotic spindle positioning have been linked to various developmental disorders and have recently emerged as a potential contributor to tumorigenesis. Despite the importance of this process to human health, the molecular mechanisms that regulate spindle orientation are not fully understood. Moreover, it remains unclear how diverse cortical polarity complexes might cooperate to influence spindle positioning. We and others have demonstrated spindle orientation roles for Dishevelled (Dsh), a key regulator of planar cell polarity, and Discs large (Dlg), a conserved apico-basal cell polarity regulator, effects which were previously thought to operate within distinct molecular pathways. Here we identify a novel direct interaction between the Dsh-PDZ domain and the alternatively spliced "I3-insert" of the Dlg-Hook domain, thus establishing a potential convergent Dsh/Dlg pathway. Furthermore, we identify a Dlg sequence motif necessary for the Dsh interaction that shares homology to the site of Dsh binding in the Frizzled receptor. Expression of Dsh enhanced Dlg-mediated spindle positioning similar to deletion of the Hook domain. This Dsh-mediated activation was dependent on the Dlg-binding partner, GukHolder (GukH). These results suggest that Dsh binding may regulate core interdomain conformational dynamics previously described for Dlg. Together, our results identify Dlg as an effector of Dsh signaling and demonstrate a Dsh-mediated mechanism for the activation of Dlg/GukH-dependent spindle positioning. Cooperation between these two evolutionarily-conserved cell polarity pathways could have important implications to both the development and maintenance of tissue homeostasis in animals.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Drosophila/citologia , Fosfoproteínas/metabolismo , Fuso Acromático , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/genética , Sequência de Aminoácidos , Animais , Proteínas Desgrenhadas , Proteínas de Drosophila , Dados de Sequência Molecular , Fosfoproteínas/química , Fosfoproteínas/genética , Ligação Proteica , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA