Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biophys Chem ; 305: 107152, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38113782

RESUMO

Although virus capsids appear as rigid, symmetric particles in experimentally determined structures; biochemical studies suggest a significant degree of structural flexibility in the particles. We carried out all-atom simulations on the icosahedral capsid of an insect virus, Flock House Virus, which show intriguing differences in the degree of flexibility of quasi-equivalent capsid subunits consistent with previously described biological behaviour. The flexibility of all the ß and γ subunits of the protein and RNA fragments is analysed and compared. Both γA subunit and RNA fragment exhibit higher flexibility than the γB and γC subunits. The capsid shell is permeable to the bidirectional movement of water molecules, and the movement is heavily influenced by the geometry of the capsid shell along specific symmetry axes. In comparison to the symmetry axes along I5 and I3, the I2 axis exhibits a slightly higher water content. This enriched water environment along I2 could play a pivotal role in facilitating the structural transitions necessary for RNA release, shedding some light on the intricate and dynamic processes underlying the viral life cycle. Our study suggests that the physical characterization of whole virus capsids is the key to identifying biologically relevant transition states in the virus life cycle and understanding the basis of virus infectivity.


Assuntos
Capsídeo , Subunidade gama Comum de Receptores de Interleucina , Capsídeo/química , Capsídeo/metabolismo , Subunidade gama Comum de Receptores de Interleucina/análise , Subunidade gama Comum de Receptores de Interleucina/metabolismo , Proteínas do Capsídeo/análise , Proteínas do Capsídeo/metabolismo , RNA/metabolismo , Água/metabolismo
2.
Nat Commun ; 14(1): 8358, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38102143

RESUMO

The spike (S) protein of SARS-CoV-2 is delivered to the virion assembly site in the ER-Golgi Intermediate Compartment (ERGIC) from both the ER and cis-Golgi in infected cells. However, the relevance and modulatory mechanism of this bidirectional trafficking are unclear. Here, using structure-function analyses, we show that S incorporation into virus-like particles (VLP) and VLP fusogenicity are determined by coatomer-dependent S delivery from the cis-Golgi and restricted by S-coatomer dissociation. Although S mimicry of the host coatomer-binding dibasic motif ensures retrograde trafficking to the ERGIC, avoidance of the host-like C-terminal acidic residue is critical for S-coatomer dissociation and therefore incorporation into virions or export for cell-cell fusion. Because this C-terminal residue is the key determinant of SARS-CoV-2 assembly and fusogenicity, our work provides a framework for the export of S protein encoded in genetic vaccines for surface display and immune activation.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/metabolismo , Complexo de Golgi/metabolismo , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo
3.
Protein Expr Purif ; 212: 106358, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37625737

RESUMO

The vesicular secretion of soluble cargo proteins from the endoplasmic reticulum (ER) is accompanied by the export of ER-resident membrane proteins that are co-packaged in secretory vesicles. The cytosolic coatomer protein complex I (COPI) utilizes the N-terminal WD40 domains of α-COPI and ß'-COPI subunits to bind these membrane protein "clients" for ER retrieval. These "αWD40" and "ß'WD40" domains are structural homologs that demonstrate distinct selectivity for client proteins. However, elucidation of the atomic-level principles of coatomer-client interactions has been challenging due to the tendency of αWD40 domain to undergo aggregation during expression and purification. Here we describe a rapid recombinant production strategy from E. coli, which substantially enhances the quality of the purified αWD40 domain. The αWD40 purification and crystallization are completed within one day, which minimizes aggregation losses and yields a 1.9 Å resolution crystal structure. We demonstrate the versatility of this strategy by applying it to purify the ß'WD40 domain, which yields crystal structures in the 1.2-1.3 Å resolution range. As an alternate recombinant production system, we develop a cost-effective strategy for αWD40 production in human Expi293 cells. Finally, we suggest a roadmap to simplify these protocols further, which is of significance for the production of WD40 mutants prone to rapid aggregation. The WD40 production strategies presented here are likely to have broad applications because the WD40 domain represents one of the largest families of biomolecular interaction modules in the eukaryotic proteome and is critical for trafficking of host as well as viral proteins such as the SARS-CoV-2 spike protein.


Assuntos
COVID-19 , Humanos , Cristalização , Escherichia coli/genética , SARS-CoV-2
5.
Mol Biol Rep ; 50(3): 2713-2721, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36562937

RESUMO

BACKGROUND: Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has caused millions of infections and deaths worldwide since its discovery in late 2019 in Wuhan, China. The receptor-binding domain (RBD) of the SARS-CoV-2 spike protein binds to the human angiotensin-converting enzyme-2 (ACE2) receptor, a critical component of the renin-angiotensin system (RAS) that initiates the viral transmission. Most of the critical mutations found in SARS-CoV-2 are associated with the RBD of the spike protein. These mutations have the potential to reduce the efficacy of vaccines and neutralizing antibodies. METHODS: In this review, the structural details of ACE2, RBD and their interactions are discussed. In addition, some critical mutations of RBD and their impact on ACE2-RBD interactions are also discussed. CONCLUSION: Preventing the interaction between Spike RBD and ACE2 is considered a viable therapeutic strategy since ACE2 binding by RBD is the first step in virus infection. Because the interactions between the two entities are critical for both viral transmission and therapeutic development, it is essential to understand their interactions in detail.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , Angiotensinas/metabolismo , Sítios de Ligação , Ligação Proteica/genética , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/genética
6.
Biophys Chem ; 291: 106908, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36244086

RESUMO

Viruses are a class of complex and dynamic macromolecular machines that can virtually infect all known life forms in the biosphere. This remarkable complexity results from a unique organization involving protein (capsid) and nucleic acid (DNA/RNA). A virus structure is metastable and highly responsive to environmental changes. Although major events of a virus life cycle are well characterized, several important questions with respect to how the nucleocapsid assemble/disassemble remain to be explored. In recent years due to enhanced computational power, molecular dynamics (MD) simulations have become an attractive alternative for addressing these questions since it is challenging to probe dynamic behavior with in vitro experimentation. The ability to simulate a complete virus particle provides an unprecedented atomic level resolution which can be used to understand its behavior under specific conditions. The current review outlines contributions made by all-atom and coarse-grained MD simulations towards understanding the mechanics and dynamics of virus structure and function. Databases and programs which facilitate such in silico investigations have also been discussed.


Assuntos
Simulação de Dinâmica Molecular , Vírus , Proteínas , RNA , DNA
7.
Commun Biol ; 5(1): 115, 2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35136165

RESUMO

ß-Coronaviruses such as SARS-CoV-2 hijack coatomer protein-I (COPI) for spike protein retrograde trafficking to the progeny assembly site in endoplasmic reticulum-Golgi intermediate compartment (ERGIC). However, limited residue-level details are available into how the spike interacts with COPI. Here we identify an extended COPI binding motif in the spike that encompasses the canonical K-x-H dibasic sequence. This motif demonstrates selectivity for αCOPI subunit. Guided by an in silico analysis of dibasic motifs in the human proteome, we employ mutagenesis and binding assays to show that the spike motif terminal residues are critical modulators of complex dissociation, which is essential for spike release in ERGIC. αCOPI residues critical for spike motif binding are elucidated by mutagenesis and crystallography and found to be conserved in the zoonotic reservoirs, bats, pangolins, camels, and in humans. Collectively, our investigation on the spike motif identifies key COPI binding determinants with implications for retrograde trafficking.


Assuntos
COVID-19/metabolismo , Complexo I de Proteína do Envoltório/metabolismo , Proteína Coatomer/metabolismo , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , Motivos de Aminoácidos/genética , Sequência de Aminoácidos , Sítios de Ligação/genética , COVID-19/genética , COVID-19/virologia , Complexo I de Proteína do Envoltório/química , Complexo I de Proteína do Envoltório/genética , Proteína Coatomer/química , Proteína Coatomer/genética , Simulação por Computador , Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo , Células HEK293 , Humanos , Modelos Moleculares , Mutação , Filogenia , Ligação Proteica , Domínios Proteicos , Transporte Proteico , SARS-CoV-2/genética , SARS-CoV-2/fisiologia , Glicoproteína da Espícula de Coronavírus/classificação , Glicoproteína da Espícula de Coronavírus/genética , Repetições WD40/genética
8.
Pathogens ; 10(8)2021 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-34451437

RESUMO

Alphaviruses are arboviruses that cause arthritis and encephalitis in humans. Eastern Equine Encephalitis Virus (EEEV) is a mosquito-transmitted alphavirus that is implicated in severe encephalitis in humans with high mortality. However, limited insights are available into the fundamental biology of EEEV and residue-level details of its interactions with host proteins. In recent years, outbreaks of EEEV have been reported mainly in the United States, raising concerns about public safety. This review article summarizes recent advances in the structural biology of EEEV based mainly on single-particle cryogenic electron microscopy (cryoEM) structures. Together with functional analyses of EEEV and related alphaviruses, these structural investigations provide clues to how EEEV interacts with host proteins, which may open avenues for the development of therapeutics.

9.
Virus Res ; 296: 198343, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33607183

RESUMO

Flaviviruses are the fastest spreading arthropod-borne viruses that cause severe symptoms such as hepatitis, hemorrhagic fever, encephalitis, and congenital deformities. Nearly 40 % of the entire human population is at risk of flavivirus epidemics. Yet, effective vaccination is restricted only to a few flaviviruses such as yellow fever and Japanese encephalitis viruses, and most recently for select cases of dengue virus infections. Despite the global spread of dengue virus, and emergence of new threats such as Zika virus and a new genotype of Japanese encephalitis virus, insights into flavivirus targets for potentially broad-spectrum vaccination are limited. In this review article, we highlight biochemical and structural differences in flavivirus proteins critical for virus assembly and host interactions. A comparative sequence analysis of pH-responsive properties of viral structural proteins identifies trends in conservation of complementary acidic-basic character between interacting viral structural proteins. This is highly relevant to the understanding of pH-sensitive differences in virus assembly in organelles such as neutral ER and acidic Golgi. Surface residues in viral interfaces identified by structural approaches are shown to demonstrate partial conservation, further reinforcing virus-specificity in assembly and interactions with host proteins. A comparative analysis of epitope conservation in emerging flaviviruses identifies therapeutic antibody candidates that have potential as broad spectrum anti-virals, thus providing a path towards development of vaccines.


Assuntos
Infecções por Flavivirus , Flavivirus , Febre Amarela , Infecção por Zika virus , Zika virus , Flavivirus/genética , Humanos , Proteínas Estruturais Virais , Febre Amarela/prevenção & controle , Zika virus/genética
10.
J Chem Inf Model ; 61(1): 423-431, 2021 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-33412850

RESUMO

Membrane fusion, a key step in the early stages of virus propagation, allows the release of the viral genome in the host cell cytoplasm. The process is initiated by fusion peptides that are small, hydrophobic components of viral membrane-embedded glycoproteins and are typically conserved within virus families. Here, we attempted to identify the correct fusion peptide region in the Spike protein of SARS-CoV-2 by all-atom molecular dynamics simulations of dual membrane systems with varied oligomeric units of putative candidate peptides. Of all of the systems tested, only a trimeric unit of a 40-amino-acid region (residues 816-855 of SARS-CoV-2 Spike) was effective in triggering the initial stages of membrane fusion, within 200 ns of simulation time. Association of this trimeric unit with dual membranes resulted in the migration of lipids from the upper leaflet of the lower bilayer toward the lower leaflet of the upper bilayer to create a structural unit reminiscent of a fusion bridge. We submit that residues 816-855 of Spike represent the bona fide fusion peptide of SARS-CoV-2 and that computational methods represent an effective way to identify fusion peptides in viral glycoproteins.


Assuntos
COVID-19/metabolismo , Fusão de Membrana , SARS-CoV-2/fisiologia , Glicoproteína da Espícula de Coronavírus/metabolismo , Internalização do Vírus , Sequência de Aminoácidos , COVID-19/virologia , Interações Hospedeiro-Patógeno , Humanos , Simulação de Dinâmica Molecular , Peptídeos/química , Peptídeos/metabolismo , Multimerização Proteica , SARS-CoV-2/química , Glicoproteína da Espícula de Coronavírus/química
11.
Comput Biol Med ; 127: 104063, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33126128

RESUMO

Viroporins are oligomeric, pore forming, viral proteins that play critical roles in the life cycle of pathogenic viruses. Viroporins like HIV-1 Vpu, Alphavirus 6 K, Influenza M2, HCV p7, and Picornavirus 2B, form discrete aqueous passageways which mediate ion and small molecule transport in infected cells. The alterations in host membrane structures induced by viroporins is essential for key steps in the virus life cycle like entry, replication and egress. Any disruption in viroporin functionality severely compromises viral pathogenesis. The envelope (E) protein encoded by coronaviruses is a viroporin with ion channel activity and has been shown to be crucial for the assembly and pathophysiology of coronaviruses. We used a combination of virtual database screening, molecular docking, all-atom molecular dynamics simulation and MM-PBSA analysis to test four FDA approved drugs - Tretinoin, Mefenamic Acid, Ondansetron and Artemether - as potential inhibitors of ion channels formed by SARS-CoV-2 E protein. Interaction and binding energy analysis showed that electrostatic interactions and polar solvation energy were the major driving forces for binding of the drugs, with Tretinoin being the most promising inhibitor. Tretinoin bound within the lumen of the channel formed by E protein, which is lined by hydrophobic residues like Phe, Val and Ala, indicating its potential for blocking the channel and inhibiting the viroporin functionality of E. In control simulations, tretinoin demonstrated a lower binding energy with a known target as compared to SARS-CoV-2 E protein. This work thus highlights the possibility of exploring Tretinoin as a potential SARS-CoV-2 E protein ion channel blocker and virus assembly inhibitor, which could be an important therapeutic strategy in the treatment for coronaviruses.


Assuntos
COVID-19/virologia , SARS-CoV-2/metabolismo , Tretinoína/farmacologia , Proteínas do Envelope Viral/antagonistas & inibidores , Simulação por Computador , Bases de Dados de Compostos Químicos , Ligantes , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Ligação Proteica , Proteínas do Envelope Viral/metabolismo
12.
Arch Biochem Biophys ; 678: 108188, 2019 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-31711790

RESUMO

Non-enveloped viruses require membrane-penetrating peptides for gaining entry inside the cytoplasm of host cells during the early stages of infection. Although several such peptides have been identified as essential components for non-enveloped virus entry, the molecular mechanism of membrane destabilization by these peptides is not well established. Here, we investigate the putative membrane penetrating peptide VP4 of Hepatitis A Virus (HAV) using a combination of molecular dynamics simulation and mutational studies. Using all-atom molecular dynamics simulation, we show that effective membrane disruption requires specific oligomeric forms (pentameric or hexameric) of VP4, while the monomeric form cannot cause similar disruption in target membranes. Reduction in hydrophobicity of VP4 significantly affects membrane penetration properties in silico, with even the oligomeric associations showing decreased membrane penetration efficiency. A synthetic peptide with a concurrent reduction in hydrophobicity is unable to disrupt liposomes in vitro, while the introduction of these mutations in the context of the viral genome adversely affects the propagation of HAV in cell culture. Taken together, our studies highlight hydrophobicity and oligomerization as some of the crucial mechanistic aspects of membrane penetration by capsid components of non-enveloped viruses.


Assuntos
Proteínas do Capsídeo/metabolismo , Membrana Celular/metabolismo , Vírus da Hepatite A , Interações Hidrofóbicas e Hidrofílicas , Multimerização Proteica , Sequência de Aminoácidos , Linhagem Celular , Proliferação de Células , Simulação de Dinâmica Molecular , Estrutura Quaternária de Proteína
13.
PLoS Negl Trop Dis ; 13(7): e0007548, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31339886

RESUMO

Viroporins like influenza A virus M2, hepatitis C virus p7, HIV-1 Vpu and picornavirus 2B associate with host membranes, and create hydrophilic corridors, which are critical for viral entry, replication and egress. The 6K proteins from alphaviruses are conjectured to be viroporins, essential during egress of progeny viruses from host membranes, although the analogue in Chikungunya Virus (CHIKV) remains relatively uncharacterized. Using a combination of electrophysiology, confocal and electron microscopy, and molecular dynamics simulations we show for the first time that CHIKV 6K is an ion channel forming protein that primarily associates with endoplasmic reticulum (ER) membranes. The ion channel activity of 6K can be inhibited by amantadine, an antiviral developed against the M2 protein of Influenza A virus; and CHIKV infection of cultured cells can be effectively inhibited in presence of this drug. Our study provides crucial mechanistic insights into the functionality of 6K during CHIKV-host interaction and suggests that 6K is a potential therapeutic drug target, with amantadine and its derivatives being strong candidates for further development.


Assuntos
Amantadina/farmacologia , Antivirais/farmacologia , Vírus Chikungunya/efeitos dos fármacos , Canais Iônicos/antagonistas & inibidores , Proteínas Virais/antagonistas & inibidores , Replicação Viral/efeitos dos fármacos , Animais , Vírus Chikungunya/fisiologia , Chlorocebus aethiops , Células HEK293 , Interações entre Hospedeiro e Microrganismos , Humanos , Microscopia Confocal , Simulação de Dinâmica Molecular , Células Vero
14.
Trends Microbiol ; 26(6): 525-537, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29079499

RESUMO

Disruption of host membranes by nonenveloped viruses, which allows the nucleocapsid or genome to enter the cytosol, is a mechanistically diverse process. Although the membrane-penetrating agents are usually small, hydrophobic or amphipathic peptides deployed from the capsid interior during entry, their manner of membrane interaction varies substantially. In this review, we discuss recent data about the molecular pathways for externalization of viral peptides amidst conformational alterations in the capsid, as well as mechanisms of membrane penetration, which is influenced by structural features of the peptides themselves as well as physicochemical properties of membranes, and other host factors. The membrane-penetrating components of nonenveloped viruses constitute an interesting class of cell-penetrating peptides, and may have potential therapeutic value for gene transfer.


Assuntos
Proteínas do Capsídeo/fisiologia , Membrana Celular/virologia , Interações entre Hospedeiro e Microrganismos , Internalização do Vírus , Capsídeo/fisiologia , Peptídeos Penetradores de Células/fisiologia , Citosol/virologia , Humanos , Polyomavirus/fisiologia , Vírus 40 dos Símios/fisiologia , Vírion/fisiologia
15.
J Clin Transl Hepatol ; 4(3): 248-257, 2016 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-27777893

RESUMO

Viral hepatitis remains a significant worldwide threat, in spite of the availability of several successful therapeutic and vaccination strategies. Complications associated with acute and chronic infections, such as liver failure, cirrhosis and hepatocellular carcinoma, are the cause of considerable morbidity and mortality. Given the significant burden on the healthcare system caused by viral hepatitis, it is essential that novel, more effective therapeutics be developed. The present review attempts to summarize the current treatments against viral hepatitis, and provides an outline for upcoming, promising new therapeutics. Development of novel therapeutics requires an understanding of the viral life cycles and viral effectors in molecular detail. As such, this review also discusses virally-encoded effectors, found to be essential for virus survival and replication in the host milieu, which may be utilized as potential candidates for development of alternative therapies in the future.

16.
J Mol Biol ; 428(17): 3540-56, 2016 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-27320388

RESUMO

In the absence of lipid envelopes and associated fusion proteins, non-enveloped viruses employ membrane lytic peptides to breach the limiting membranes of host cells. Although several of these lytic peptides have been identified and characterized, their manner of deployment and interaction with host membranes remains unclear in most cases. We are using the gamma peptide of Flock House Virus (FHV), a model non-enveloped virus, to understand the mechanistic details of non-enveloped virus interaction with host cell membranes. We utilized a combination of biophysical assays, molecular dynamics simulation studies, and single-particle cryo-electron microscopy to elucidate the functional and structural determinants for membrane penetration by gamma in context of the FHV capsid. Although the amphipathic, helical N-terminal region of gamma (γ1) was previously thought to be the membrane-penetrating module, with the C-terminal region having a supporting role in correct structural positioning of γ1, we demonstrate that the C terminus of gamma directly participates in membrane penetration. Our studies suggest that full-length gamma, including the hydrophobic C terminus, forms an alpha-helical hairpin motif, and any disruption in this motif drastically reduces its functionality, in spite of the correct positioning of amphipathic γ1 in the virus capsid. Taken together, our data suggest that the most effective module for membrane disruption is a pentameric unit of full-length gamma, released from the virus, which associates with membranes via both N- and C-terminal ends.


Assuntos
Nodaviridae/fisiologia , Proteínas Virais/química , Proteínas Virais/metabolismo , Internalização do Vírus , Animais , Fenômenos Biofísicos , Linhagem Celular , Membrana Celular/virologia , Microscopia Crioeletrônica , Insetos , Modelos Biológicos , Modelos Moleculares , Simulação de Dinâmica Molecular , Conformação Proteica , Multimerização Proteica
17.
Sci Rep ; 5: 15884, 2015 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-26515753

RESUMO

Viroporins are virally encoded, membrane-active proteins, which enhance viral replication and assist in egress of viruses from host cells. The 2B proteins in the picornaviridae family are known to have viroporin-like properties, and play critical roles during virus replication. The 2B protein of Hepatitis A Virus (2B), an unusual picornavirus, is somewhat dissimilar from its analogues in several respects. HAV 2B is approximately 2.5 times the length of other 2B proteins, and does not disrupt calcium homeostasis or glycoprotein trafficking. Additionally, its membrane penetrating properties are not yet clearly established. Here we show that the membrane interacting activity of HAV 2B is localized in its C-terminal region, which contains an alpha-helical hairpin motif. We show that this region is capable of forming small pores in membranes and demonstrates lipid specific activity, which partially rationalizes the intracellular localization of full-length 2B. Using a combination of biochemical assays and molecular dynamics simulation studies, we also show that HAV 2B demonstrates a marked propensity to dimerize in a crowded environment, and probably interacts with membranes in a multimeric form, a hallmark of other picornavirus viroporins. In sum, our study clearly establishes HAV 2B as a bona fide viroporin in the picornaviridae family.


Assuntos
Vírus da Hepatite A/metabolismo , Proteínas não Estruturais Virais/metabolismo , Sequência de Aminoácidos , Dicroísmo Circular , Dimerização , Difusão Dinâmica da Luz , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Humanos , Lipossomos/química , Lipossomos/metabolismo , Microscopia de Fluorescência , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Peptídeos/química , Peptídeos/genética , Peptídeos/metabolismo , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/genética , Internalização do Vírus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA