Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Eur J Med Chem ; 257: 115471, 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37257213

RESUMO

Leishmaniasis is a complex of neglected tropical diseases caused by various species of leishmanial parasites that primarily affect the world's poorest people. A limited number of standard medications are available for this disease that has been used for several decades, these drugs have many drawbacks such as resistance, higher cost, and patient compliance, making it difficult to reach the poor. The search for novel chemical entities to treat leishmaniasis has led to target-based scaffold research. Among several identified potential molecular targets, enzymes involved in the purine salvage pathway include polyamine biosynthetic process, such as arginase, ornithine decarboxylase, S-adenosylmethionine decarboxylase, spermidine synthase, trypanothione reductase as well as enzymes in the DNA cell cycle, such as DNA topoisomerases I and II plays vital role in the life cycle survival of leishmanial parasite. This review mainly focuses on various heterocyclic scaffolds, and their specific inhibitory targets against leishmaniasis, particularly those from the polyamine biosynthesis pathway and DNA topoisomerases with estimated activity studies of various heterocyclic analogs in terms of their IC50 or EC50 value, reported molecular docking analysis from available published literatures.


Assuntos
Leishmania , Leishmaniose , Humanos , Simulação de Acoplamento Molecular , Objetivos , Leishmaniose/tratamento farmacológico , Poliaminas/metabolismo
2.
ACS Omega ; 8(1): 357-364, 2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36643486

RESUMO

PacC is a key transcriptional regulator of human pathogenic fungus Trichophyton rubrum with pivotal roles in pH homeostasis and virulence. We report the first biophysical characterization of the C-terminal inhibitory tail of PacC, pertinent to its physiological role in maintaining the inactive state of PacC at acidic pH which undergoes conformational changes for its proteolytic removal and activation, at alkaline pH. To gain insights into the structural features of PacC that enable the required conformational flexibility, we performed gel filtration chromatography, dynamic light scattering, circular dichroism, and 1-anilino-8-naphthalenesulfonate binding and showed that the tail exhibits properties similar to intrinsically disordered proteins, as also predicted by bioinformatics tools. We demonstrate that the C-terminal tail is conformationally flexible and attains a molten globule-like state at extremely acidic pH and undergoes biphasic GdmCl-induced unfolding in a noncooperative manner with an intermediate X state. We hypothesize that the conformational plasticity of the C-terminal tail of PacC may play a significant role in modulating its pH-dependent transcriptional activation.

3.
J Mol Graph Model ; 119: 108397, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36542915

RESUMO

Leishmaniasis is a complex neglected tropical disease caused by various leishmanial parasites that primarily affect the world's poorest people. A limited number of standard medications are available for this disease that has been used for several decades, which have drawbacks such as resistance, higher cost, and patient compliance, making it difficult to reach the poor. The search for novel chemical entities to treat leishmaniasis has led to target-based scaffold research. Thiochromone moieties in conjugation with aromatic amino acids have been considered for the study, along with possible substitutions of the electron-withdrawing and electron-donating groups. N-myristoyl transferase (NMT) has been selected as the molecular target for the study responsible for protein-protein interaction and ribosylation of proteins necessary for the growth inside the human body of the parasite. The designed novel thiochromone analogs were docked against the selected leishmanial NMT using thein-silico methods, physicochemical and toxicity properties were predicted, and Structure-Activity Relationship was also established in-silico. Finally, a molecular dynamics simulation study for 100 ns gave an idea about the stability of the protein-ligand complex. A time frame analysis of each 10 ns confirmation was also studied to understand better the putative binding pattern designed analogs.


Assuntos
Leishmania , Humanos , Relação Estrutura-Atividade , Biologia Computacional
4.
J Fungi (Basel) ; 8(12)2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36547574

RESUMO

Trichophyton rubrum is the most prevalent causative agent responsible for 80-90% of all known superficial fungal infections in humans, worldwide. Limited available methods for genetic manipulations have been one of the major bottlenecks in understanding relevant molecular mechanisms of disease pathogenesis in T. rubrum. Here, a dual-plasmid-based CRISPR/Cas9 strategy to edit pH regulatory transcription factor, pacC, of a clinical isolate of T. rubrum by non-homologous end joining (NHEJ) repair is presented. A cas9-eGFP fusion that aids pre-screening of primary transformants through detection of GFP fluorescence is expressed from one plasmid while target-specific sgRNA from the other brings about mutagenesis of pacC with an overall efficiency of 33.8-37.3%. The mutants had reduced transcript levels of pacC at both acidic and alkaline pH with several morphological abnormalities. We believe this dual-plasmid-based CRISPR/Cas9 strategy will aid functional genomics studies, especially in non-lab-adapted clinical strains of T. rubrum.

5.
Phys Chem Chem Phys ; 18(25): 16921-9, 2016 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-27282392

RESUMO

Grain boundaries are effective sinks for radiation-induced defects, ultimately impacting the radiation tolerance of nanocrystalline materials (dense materials with nanosized grains) against net defect accumulation. However, irradiation-induced grain growth leads to grain boundary area decrease, shortening potential benefits of nanostructures. A possible approach to mitigate this is the introduction of dopants to target a decrease in grain boundary mobility or a reduction in grain boundary energy to eliminate driving forces for grain growth (using similar strategies as to control thermal growth). Here we tested this concept in nanocrystalline zirconia doped with lanthanum. Although the dopant is observed to segregate to the grain boundaries, causing grain boundary energy decrease and promoting dragging forces for thermally activated boundary movement, irradiation induced grain growth could not be avoided under heavy ion irradiation, suggesting a different growth mechanism as compared to thermal growth. Furthermore, it is apparent that reducing the grain boundary energy reduced the effectiveness of the grain boundary as sinks, and the number of defects in the doped material is higher than in undoped (La-free) YSZ.

6.
FEMS Microbiol Lett ; 362(8): fnv039, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25761751

RESUMO

Trichophyton rubrum is one of the major causative agents of dermatophytosis in humans worldwide. We report the draft genome sequence of T. rubrum var. raubitschekii from Delhi, India, isolated from a patient presenting symptoms of onychomycosis. The total estimated genome size of the clinical isolate is 25.2 MB containing 8265 predicted protein-coding sequences, 91 tRNA and 15 rRNA genes. Sequence analysis of the secreted subtilases, one of the major virulence factors in dermatophytes, clusters them into three subfamilies with distinct sequence features. The genome sequence is a step in understanding diversity of dermatophytes worldwide and will aid in identification of virulence factors and dissecting mechanisms of pathogenesis among them.


Assuntos
Genoma Fúngico , Onicomicose/microbiologia , Trichophyton/genética , Arthrodermataceae/genética , Sequência de Bases , Humanos , Índia , Dados de Sequência Molecular , Análise de Sequência de DNA
7.
Sci Rep ; 5: 7746, 2015 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-25582769

RESUMO

Materials for applications in hostile environments, such as nuclear reactors or radioactive waste immobilization, require extremely high resistance to radiation damage, such as resistance to amorphization or volume swelling. Nanocrystalline materials have been reported to present exceptionally high radiation-tolerance to amorphization. In principle, grain boundaries that are prevalent in nanomaterials could act as sinks for point-defects, enhancing defect recombination. In this paper we present evidence for this mechanism in nanograined Yttria Stabilized Zirconia (YSZ), associated with the observation that the concentration of defects after irradiation using heavy ions (Kr(+), 400 keV) is inversely proportional to the grain size. HAADF images suggest the short migration distances in nanograined YSZ allow radiation induced interstitials to reach the grain boundaries on the irradiation time scale, leaving behind only vacancy clusters distributed within the grain. Because of the relatively low temperature of the irradiations and the fact that interstitials diffuse thermally more slowly than vacancies, this result indicates that the interstitials must reach the boundaries directly in the collision cascade, consistent with previous simulation results. Concomitant radiation-induced grain growth was observed which, as a consequence of the non-uniform implantation, caused cracking of the nano-samples induced by local stresses at the irradiated/non-irradiated interfaces.

8.
J Am Chem Soc ; 133(51): 20664-7, 2011 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-22103236

RESUMO

A microwave-assisted reaction has been developed to produce hydrogen-terminated silicon quantum dots (QDs). The Si QDs were passivated for water solubility via two different methods: hydrosilylation produced 3-aminopropenyl-terminated Si QDs, and a modified Stöber process produced silica-encapsulated Si QDs. Both methods produce water-soluble QDs with maximum emission at 414 nm, and after purification, the QDs exhibit intrinsic fluorescence quantum yield efficiencies of 15 and 23%, respectively. Even though the QDs have different surfaces, they exhibit nearly identical absorption and fluorescence spectra. Femtosecond transient absorption spectroscopy was used for temporal resolution of the photoexcited carrier dynamics between the QDs and ligand. The transient dynamics of the 3-aminopropenyl-terminated Si QDs is interpreted as a formation and decay of a charge-transfer (CT) excited state between the delocalized π electrons of the carbon linker and the Si core excitons. This CT state is stable for ~4 ns before reverting back to a more stable, long-living species. The silica-encapsulated Si QDs show a simpler spectrum without CT dynamics.


Assuntos
Hidrogênio/química , Pontos Quânticos , Silício/química , Ligantes , Micro-Ondas , Nanotecnologia/métodos , Solubilidade , Água/química
9.
Chem Mater ; 23(11): 2987-2993, 2011 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-21709812

RESUMO

A metal shell was used in this study to provide significant enhancement of the up-converted emission from cubic NaYF(4) nanoparticles, creating a valuable composite material for labeling in biology and other applications - use of the cubic form of the material obviates the need to undertake a high temperature transformation to the naturally more efficient hexagonal phase. The NaYF(4) matrix contained ytterbium sensitizer and an Erbium (Er) or Thulium (Tm) activator. The particle sizes of the as-synthesized nanoparticles were in the range of 20-40 nm with a gold shell thickness of 4-8 nm. The gold shell was macroscopically amorphous. The synthesis method was based on a citrate chelation. In this approach, we exploited the ability of the citrate ion to act as a reductant and stabilizer. Confining the citrate ion reductant on the nanophosphor surface rather than in the solution was critical to the gold shell formation. The plasmonic shell enhanced the up-conversion emission of Tm from visible and near-infrared regions by up to a factor of 8, in addition to imparting a visible color arising from the plasmon absorption of the gold shell. The up-conversion enhancement observed with Tm and Er were different for similar gold coverages, with local crystal field changes as a possible route to enhance up-conversion emission from high symmetry structural hosts. These novel up-converting nanophosphor particles combine the phosphor and features of a gold shell, providing a unique platform for many biological imaging and labeling applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA