Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Opt Lett ; 47(10): 2546-2549, 2022 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-35561397

RESUMO

The engineering of exceptional points (EPs) in open optical systems has lately attracted much attention for developing future all-optical devices. However, investigation of the fascinating features of EPs in fiber geometries is lacking. We design a fabrication feasible dual-core optical fiber segment, where non-Hermiticity in terms of a symmetric customized gain-loss profile is introduced to modulate the interaction between two corresponding coupled modes toward hosting a dynamical EP encirclement scheme in the gain-loss parameter space. An asymmetric conversion process between two supported modes is reported by exploiting the chirality of the encountered EP. The proposed scheme can lead to an advanced platform to design mode-manipulative all-optical components in communication and all-fiber photonic devices.

2.
Opt Lett ; 45(6): 1439-1442, 2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-32163986

RESUMO

The dynamical parametric encirclement around a second-order exceptional point (EP) enables the time-asymmetric nonadiabatic evolution of light, which follows the chirality of the underlying system. Such light dynamics in the presence of multiple EPs and the corresponding chiral aspect is yet to be explored. In this Letter, we report a gain-loss assisted four-mode-supported optical waveguide that hosts a parameter space to dynamically encircle multiple EPs. In the presence of multiple EPs, we establish a unique nonadiabatic behavior of light, where beyond the chiral aspect of the system, light is switched to a particular mode, irrespective of the choice of the input mode. Proposed scheme certainly opens a step-forward approach in light manipulation to facilitate next-generation integrated photonic systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA