Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biomater Sci ; 12(3): 634-649, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38047368

RESUMO

Exosomes have emerged as a promising tool for the delivery of drugs and genetic materials, owing to their biocompatibility and non-immunogenic nature. However, challenges persist in achieving successful oral delivery due to their susceptibility to degradation in the harsh gastrointestinal (GI) environment and impeded transport across the mucus-epithelium barrier. To overcome these challenges, we have developed high-purity bovine milk exosomes (mExo) as a scalable and efficient oral drug delivery system, which can be customized by incorporating hydrophilic and zwitterionic motifs on their surface. In our study, we observed significantly improved transport rates by 2.5-4.5-fold in native porcine intestinal mucus after the introduction of hydrophilic and zwitterionic surface modifications, as demonstrated by transwell setup and fluorescence recovery after photobleaching (FRAP) analysis. Remarkably, mExo functionalized by a block peptide (BP), consisting of cationic and anionic amino acids arranged in blocks at the two ends, demonstrated superior tolerability in the acidic gastric environment (with a protein recovery rate of 84.8 ± 7.7%) and exhibited a 2.5-fold increase in uptake by intestinal epithelial cells. Furthermore, both mExo and mExo-BP demonstrated successful intracellular delivery of functional siRNA, resulting in up to 65% suppression of the target green fluorescence protein (GFP) gene expression at a low dose of siRNA (5 pmol) without causing significant toxicity. These findings highlight the immense potential of modifying mExo with hydrophilic and zwitterionic motifs for effective oral delivery of siRNA therapies.


Assuntos
Exossomos , Nanopartículas , Animais , Suínos , Leite , Exossomos/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Peptídeos/metabolismo , RNA Interferente Pequeno/metabolismo , Permeabilidade , Muco/metabolismo , Administração Oral , Portadores de Fármacos/química , Nanopartículas/química
2.
Angew Chem Int Ed Engl ; 62(34): e202306274, 2023 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-37338464

RESUMO

Tumor Necrosis Factor-α (TNF-α) is a cytokine that is normally produced by immune cells when fighting an infection. But, when too much TNF-α is produced as in autoimmune diseases, this leads to unwanted and persistent inflammation. Anti-TNF-α monoclonal antibodies have revolutionized the therapy of these disorders by blocking TNF-α and preventing its binding to TNF-α receptors, thus suppressing the inflammation. Herein, we propose an alternative in the form of molecularly imprinted polymer nanogels (MIP-NGs). MIP-NGs are synthetic antibodies obtained by nanomoulding the 3-dimensional shape and chemical functionalities of a desired target in a synthetic polymer. Using an in-house developed in silico rational approach, epitope peptides of TNF-α were generated and 'synthetic peptide antibodies' were prepared. The resultant MIP-NGs bind the template peptide and recombinant TNF-α with high affinity and selectivity, and can block the binding of TNF-α to its receptor. Consequently they were applied to neutralize pro-inflammatory TNF-α in the supernatant of human THP-1 macrophages, leading to a downregulation of the secretion of pro-inflammatory cytokines. Our results suggest that MIP-NGs, which are thermally and biochemically more stable and easier to manufacture than antibodies, and cost-effective, are very promising as next generation TNF-α inhibitors for the treatment of inflammatory diseases.


Assuntos
Impressão Molecular , Polímeros Molecularmente Impressos , Humanos , Nanogéis , Fator de Necrose Tumoral alfa , Inibidores do Fator de Necrose Tumoral , Anticorpos/metabolismo , Peptídeos/farmacologia , Macrófagos/metabolismo , Inflamação/tratamento farmacológico , Impressão Molecular/métodos
3.
Angew Chem Int Ed Engl ; 60(38): 20849-20857, 2021 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-34296498

RESUMO

Molecularly imprinted polymers (MIPs) are tailor-made synthetic antibodies possessing specific binding cavities designed for a target molecule. Currently, MIPs for protein targets are synthesized by imprinting a short surface-exposed fragment of the protein, called epitope or antigenic determinant. However, finding the epitope par excellence that will yield a peptide "synthetic antibody" cross-reacting exclusively with the protein from which it is derived, is not easy. We propose a computer-based rational approach to unambiguously identify the "best" epitope candidate. Then, using Saturation Transfer Difference (STD) and WaterLOGSY NMR spectroscopies, we prove the existence of specific binding sites created by the imprinting of this peptide epitope in the MIP nanogel. The optimized MIP nanogel could bind the epitope and cognate protein with a high affinity and selectivity. The study was performed on Hepatitis A Virus Cell Receptor-1 protein, also known as KIM-1 and TIM-1, for its ubiquitous implication in numerous pathologies.

4.
Biomater Sci ; 9(12): 4260-4277, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-33367332

RESUMO

Bovine milk-derived exosomes have recently emerged as a promising nano-vehicle for the encapsulation and delivery of macromolecular biotherapeutics. Here we engineer high purity bovine milk exosomes (mExo) with modular surface tunability for oral delivery of small interfering RNA (siRNA). We utilize a low-cost enrichment method combining casein chelation with differential ultracentrifugation followed by size exclusion chromatography, yielding mExo of high concentration and purity. Using in vitro models, we demonstrate that negatively charged hydrophobic mExos can penetrate multiple biological barriers to oral drug delivery. A hydrophilic polyethylene glycol (PEG) coating was introduced on the mExo surface via passive, stable hydrophobic insertion of a conjugated lipid tail, which significantly reduced mExo degradation in acidic gastric environment and enhanced their permeability through mucin by over 3× compared to unmodified mExo. Both mExo and PEG-mExo exhibited high uptake by intestinal epithelial cells and mediated functional intracellular delivery of siRNA, thereby suppressing the expression of the target green fluorescence protein (GFP) gene by up to 70%. We also show that cationic chemical transfection is significantly more efficient in loading siRNA into mExo than electroporation. The simplicity of isolating high purity mExo in high concentrations and equipping them with tunable surface properties, demonstrated here, paves way for the development of mExo as an effective, scalable platform technology for oral drug delivery of siRNA.


Assuntos
Exossomos , Animais , Bovinos , Sistemas de Liberação de Medicamentos , Leite , Muco , Polietilenoglicóis , RNA Interferente Pequeno
5.
J Pharmacol Exp Ther ; 376(2): 190-203, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33203659

RESUMO

As a gut-restricted, nonabsorbed therapy, polymeric bile acid sequestrants (BAS) play an important role in managing hyperlipidemia and hyperglycemia. Similarly, nonabsorbable sequestrants of dietary phosphate have been used for the management of hyperphosphatemia in end-stage renal disease. To evaluate the potential utility of such polymer sequestrants to treat type 2 diabetes (T2D) and its associated renal and cardiovascular complications, we synthesized a novel polymeric sequestrant, SAR442357, possessing optimized bile acid (BA) and phosphate sequestration characteristics. Long-term treatment of T2D obese cZucker fatty/Spontaneously hypertensive heart failure F1 hybrid (ZSF1) with SAR442357 resulted in enhanced sequestration of BAs and phosphate in the gut, improved glycemic control, lowering of serum cholesterol, and attenuation of diabetic kidney disease (DKD) progression. In comparison, colesevelam, a BAS with poor phosphate binding properties, did not prevent DKD progression, whereas losartan, an angiotensin II receptor blocker that is widely used to treat DKD, showed no effect on hyperglycemia. Analysis of hepatic gene expression levels of the animals treated with SAR442357 revealed upregulation of genes responsible for the biosynthesis of cholesterol and BAs, providing clear evidence of target engagement and mode of action of the new sequestrant. Additional hepatic gene expression pathway changes were indicative of an interruption of the enterohepatic BA cycle. Histopathological analysis of ZSF1 rat kidneys treated with SAR442357 further supported its nephroprotective properties. Collectively, these findings reveal the pharmacological benefit of simultaneous sequestration of BAs and phosphate in treating T2D and its associated comorbidities and cardiovascular complications. SIGNIFICANCE STATEMENT: A new nonabsorbed polymeric sequestrant with optimum phosphate and bile salt sequestration properties was developed as a treatment option for DKD. The new polymeric sequestrant offered combined pharmacological benefits including glucose regulation, lipid lowering, and attenuation of DKD progression in a single therapeutic agent.


Assuntos
Anti-Hipertensivos/uso terapêutico , Ácidos e Sais Biliares/metabolismo , Nefropatias Diabéticas/tratamento farmacológico , Hidrogéis/uso terapêutico , Hipertensão/tratamento farmacológico , Hipoglicemiantes/uso terapêutico , Animais , Anti-Hipertensivos/síntese química , Colesterol/metabolismo , Hidrogéis/síntese química , Hipoglicemiantes/síntese química , Fígado/metabolismo , Fosfatos/metabolismo , Poliaminas/química , Ratos , Ratos Zucker
6.
NPJ Vaccines ; 5(1): 33, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32377398

RESUMO

A growing global health concern, Lyme disease has become the most common tick-borne disease in the United States and Europe. Caused by the bacterial spirochete Borrelia burgdorferi sensu lato (sl), this disease can be debilitating if not treated promptly. Because diagnosis is challenging, prevention remains a priority; however, a previously licensed vaccine is no longer available to the public. Here, we designed a six component vaccine that elicits antibody (Ab) responses against all Borrelia strains that commonly cause Lyme disease in humans. The outer surface protein A (OspA) of Borrelia was fused to a bacterial ferritin to generate self-assembling nanoparticles. OspA-ferritin nanoparticles elicited durable high titer Ab responses to the seven major serotypes in mice and non-human primates at titers higher than a previously licensed vaccine. This response was durable in rhesus macaques for more than 6 months. Vaccination with adjuvanted OspA-ferritin nanoparticles stimulated protective immunity from both B. burgdorferi and B. afzelii infection in a tick-fed murine challenge model. This multivalent Lyme vaccine offers the potential to limit the spread of Lyme disease.

7.
Vaccine ; 37(42): 6208-6220, 2019 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-31493950

RESUMO

Seasonal influenza vaccines represent a positive intervention to limit the spread of the virus and protect public health. Yet continual influenza evolution and its ability to evade immunity pose a constant threat. For these reasons, vaccines with improved potency and breadth of protection remain an important need. We previously developed a next-generation influenza vaccine that displays the trimeric influenza hemagglutinin (HA) on a ferritin nanoparticle (NP) to optimize its presentation. Similar to other vaccines, HA-nanoparticle vaccine efficacy is increased by the inclusion of adjuvants during immunization. To identify the optimal adjuvants to enhance influenza immunity, we systematically analyzed TLR agonists for their ability to elicit immune responses. HA-NPs were compatible with nearly all adjuvants tested, including TLR2, TLR4, TLR7/8, and TLR9 agonists, squalene oil-in-water mixtures, and STING agonists. In addition, we chemically conjugated TLR7/8 and TLR9 ligands directly to the HA-ferritin nanoparticle. These TLR agonist-conjugated nanoparticles induced stronger antibody responses than nanoparticles alone, which allowed the use of a 5000-fold-lower dose of adjuvant than traditional admixtures. One candidate, the oil-in-water adjuvant AF03, was also tested in non-human primates and showed strong induction of neutralizing responses against both matched and heterologous H1N1 viruses. These data suggest that AF03, along with certain TLR agonists, enhance strong neutralizing antibody responses following influenza vaccination and may improve the breadth, potency, and ultimately vaccine protection in humans.


Assuntos
Adjuvantes Imunológicos/farmacologia , Anticorpos Neutralizantes/imunologia , Vacinas contra Influenza/imunologia , Adjuvantes Imunológicos/química , Animais , Feminino , Células HEK293 , Testes de Inibição da Hemaglutinação , Hemaglutininas , Humanos , Macaca mulatta , Camundongos Endogâmicos BALB C , Nanopartículas , Receptores Toll-Like/agonistas
8.
Org Biomol Chem ; 17(35): 8115-8124, 2019 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-31460552

RESUMO

We report a modular approach to synthesize maleimido group containing hydrophilic dolastatin 10 (Dol10) derivatives as drug-linkers for the syntheses of antibody-drug conjugates (ADCs). Discrete polyethylene glycol (PEG) moieties of different chain lengths were introduced as part of the linker to impart hydrophilicity to these drug linkers. The synthesis process involved construction of PEG maleimido derivatives of the tetrapeptide intermediate (N-methylvaline-valine-dolaisoleucine-dolaproine), which were subsequently coupled with dolaphenine to generate the desired drug linkers. The synthetic method reported in this manuscript circumvents the use of highly cytotoxic Dol10 in its native form. By using trastuzumab (Herceptin®) as the antibody we have synthesized Dol10 containing ADCs. The presence of a discrete PEG chain in the drug linkers resulted in ADCs free from aggregation. The effect of PEG chain length on the biological activities of these Dol10 containing ADCs was investigated by in vitro cytotoxicity assays. ADCs containing PEG6 and PEG8 spacers exhibited the highest level of in vitro anti-proliferative activity against HER2-positive (SK-BR-3) human tumor cells. ADCs derived from Herceptin® and PEG8-Dol10, at a dose of 10 mg kg-1, effectively delayed the tumor growth and prolonged the survival time in mice bearing human ovarian SKOV-3 xenografts.


Assuntos
Anticorpos Monoclonais/farmacologia , Antineoplásicos/farmacologia , Depsipeptídeos/farmacologia , Imunoconjugados/efeitos dos fármacos , Animais , Anticorpos Monoclonais/química , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Depsipeptídeos/química , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Interações Hidrofóbicas e Hidrofílicas , Camundongos , Camundongos SCID , Conformação Molecular , Células Tumorais Cultivadas
9.
Sci Rep ; 9(1): 11565, 2019 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-31399627

RESUMO

Preparation of sophisticated delivery systems for nanomedicine applications generally involve multi-step procedures using organic solvents. In this study, we have developed a simple self-assembling process to prepare docetaxel-loaded hyaluronic acid (HA) nanocapsules by using a self-emulsification process without the need of organic solvents, heat or high shear forces. These nanocapsules, which comprise an oily core and a shell consisting of an assembly of surfactants and hydrophobically modified HA, have a mean size of 130 nm, a zeta potential of -20 mV, and exhibit high docetaxel encapsulation efficiency. The nanocapsules exhibited an adequate stability in plasma. Furthermore, in vitro studies performed using A549 lung cancer cells, showed effective intracellular delivery of docetaxel. On the other hand, blank nanocapsules showed very low cytotoxicity. Overall, these results highlight the potential of self-emulsifying HA nanocapsules for intracellular drug delivery.


Assuntos
Antineoplásicos/administração & dosagem , Docetaxel/administração & dosagem , Ácido Hialurônico/química , Nanocápsulas/química , Células A549 , Antineoplásicos/farmacologia , Docetaxel/farmacologia , Sistemas de Liberação de Medicamentos , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Tensoativos/química
10.
Clin Cancer Res ; 25(15): 4846-4858, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31064780

RESUMO

PURPOSE: Gasdermin B (GSDMB) overexpression/amplification occurs in about 60% of HER2 breast cancers, where it promotes cell migration, resistance to anti-HER2 therapies, and poor clinical outcome. Thus, we tackle GSDMB cytoplasmic overexpression as a new therapeutic target in HER2 breast cancers. EXPERIMENTAL DESIGN: We have developed a new targeted nanomedicine based on hyaluronic acid-biocompatible nanocapsules, which allow the intracellular delivery of a specific anti-GSDMB antibody into HER2 breast cancer cells both in vitro and in vivo. RESULTS: Using different models of HER2 breast cancer cells, we show that anti-GSDMB antibody loaded to nanocapsules has significant and specific effects on GSDMB-overexpressing cancer cells' behavior in ways such as (i) lowering the in vitro cell migration induced by GSDMB; (ii) enhancing the sensitivity to trastuzumab; (iii) reducing tumor growth by increasing apoptotic rate in orthotopic breast cancer xenografts; and (iv) diminishing lung metastasis in MDA-MB-231-HER2 cells in vivo. Moreover, at a mechanistic level, we have shown that AbGB increases GSDMB binding to sulfatides and consequently decreases migratory cell behavior and may upregulate the potential intrinsic procell death activity of GSDMB. CONCLUSIONS: Our findings portray the first evidence of the effectiveness and specificity of an antibody-based nanomedicine that targets an intracellular oncoprotein. We have proved that intracellular-delivered anti-GSDMB reduces diverse protumor GSDMB functions (migration, metastasis, and resistance to therapy) in an efficient and specific way, thus providing a new targeted therapeutic strategy in aggressive HER2 cancers with poor prognosis.


Assuntos
Anticorpos Monoclonais/farmacologia , Neoplasias da Mama/tratamento farmacológico , Movimento Celular , Resistencia a Medicamentos Antineoplásicos , Proteínas de Neoplasias/antagonistas & inibidores , Receptor ErbB-2/antagonistas & inibidores , Trastuzumab/farmacologia , Animais , Neoplasias da Mama/imunologia , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos/métodos , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Espaço Intracelular , Camundongos , Nanocápsulas/química , Proteínas de Neoplasias/metabolismo , Receptor ErbB-2/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Biomaterials ; 178: 326-338, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29861090

RESUMO

Hyaluronic acid (HA) hydrogels have found a wide range of applications in biomedicine: regenerative medicine to drug delivery applications. In vivo quantitative assessment of these hydrogels using magnetic resonance imaging (MRI) provides an effective, accurate, safe, and non-invasive translational approach to assess the biodegradability of HA hydrogels. Chemical exchange saturation transfer (CEST) is an MRI contrast enhancement technique that overcomes the concentration limitation of other techniques like magnetic resonance spectroscopy (MRS) by detecting metabolites at up to two orders of magnitude or higher. In this study, HA hydrogels were synthesized based on different crosslinking agents and assessed using CEST MRI to investigate the in vivo degradation profiles of these gels in a mouse subcutaneous injection model over a three-month period. Nature of crosslinking agents was found to influence their degradation profiles. Since CEST MRI provides a unique chemical signature to visualize HA hydrogels, our studies proved that this technique could be used as a guide in the hydrogel optimization process for drug delivery and regenerative medicine applications.


Assuntos
Ácido Hialurônico/química , Hidrogéis/química , Imageamento por Ressonância Magnética/métodos , Animais , Reagentes de Ligações Cruzadas/química , Feminino , Ácido Hialurônico/síntese química , Hidrogéis/síntese química , Camundongos Endogâmicos C57BL , Solubilidade , Fatores de Tempo
12.
ChemMedChem ; 13(8): 790-794, 2018 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-29517131

RESUMO

A series of novel multivalent drug linkers (MDLs) containing cytotoxic agents were synthesized and conjugated to antibodies to yield highly potent antibody-drug conjugates (ADCs) with drug/antibody ratios (DARs) higher than those typically reported in the literature (10 vs. ≈4). These MDLs contain two copies of a cytotoxic agent attached to biocompatible scaffolds composed of a branched peptide core and discrete polyethylene glycol (PEG) chains to enhance solubility and decrease aggregation. These drug linkers produced well-defined ADCs, whose DARs could be accurately determined by LC-MS. Using this approach, ADCs with significantly lower aggregation and higher DAR than those of conventional drug linker design were obtained with highly hydrophobic cytotoxic agents such as monomethyldolastatin 10 (MMAD). The in vitro potencies of the MDL-derived conjugates matched that of ADCs of similar DAR with conventional linkers, and the potency increased proportionally with drug loading. This approach may provide a means to prepare highly potent ADCs from a broader range of drugs, including those with lower cytotoxicity or poor solubility, which otherwise limits their use for antibody-drug conjugates. This may also provide a means to further improve the potency achievable with cytotoxins currently used in ADCs.


Assuntos
Antineoplásicos Imunológicos/química , Imunoconjugados/química , Polietilenoglicóis/química , Trastuzumab/química , Antineoplásicos Imunológicos/farmacologia , Linhagem Celular Tumoral , Desenho de Fármacos , Humanos , Interações Hidrofóbicas e Hidrofílicas , Imunoconjugados/farmacologia , Neoplasias/tratamento farmacológico , Polietilenoglicóis/farmacologia , Agregados Proteicos , Solubilidade , Trastuzumab/farmacologia
13.
ACS Biomater Sci Eng ; 4(2): 558-565, 2018 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-33418745

RESUMO

Hyaluronic acid (HA) microgels were investigated as biocompatible and biodegradable reagents for facilitating endosomolysis in human cells. Employing inverse emulsion templates, HA microgels were prepared by cross-linking aqueous sodium hyaluronate droplets with divinyl sulfone (DVS). Introduction of ether sulfone cross-links was confirmed by infrared (IR) spectroscopy and elemental analysis. The degree of cross-linking of the microgels was estimated using high performance liquid chromatography (HPLC). The size distribution of the water-dispersible HA microgels was studied by laser diffraction analysis, and the gel morphology was investigated using scanning electron microscopy (SEM). Aqueous microgel suspensions were found to be well-tolerated in human cells at concentrations of up to 100 µg/mL. Endosome-rupturing properties of the HA microgels were evaluated in vitro using calcein internalization and Cre protein delivery assays. The results of this study serve as a proof-of-principle for the utility of cross-linked HA microgels as a new class of biocompatible and biodegradable endosomolytic reagents.

14.
Curr Cancer Drug Targets ; 16(6): 469-79, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27174056

RESUMO

Antibody-drug conjugates (ADCs) take the advantage of antigen specificity of monoclonal antibodies to deliver highly potent cytotoxic drugs selectively to antigen-expressing tumor cells. The recent approval of Adcetris™ and Kadcyla™ as well as emerging data from numerous ongoing clinical trials underscore the role of ADCs as a new therapeutic option for cancer patients. However, conventional conjugation methods generally result in a heterogeneous mixture of ADCs, which can result in significant therapeutic liabilities and can lead to complicated manufacturing processes. The increased understanding from the clinical investigation of current ADCs and site-specific bioconjugation technologies has enabled scientists to accelerate the discovery and development of the next generation ADCs with defined and homogeneous composition. The present manuscript reviews the recent advances and trends in the research and development of novel ADCs obtained by site-specific conjugation method.


Assuntos
Especificidade de Anticorpos/imunologia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Imunoconjugados/farmacocinética , Imunoconjugados/uso terapêutico , Neoplasias/tratamento farmacológico , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Antineoplásicos/imunologia , Humanos , Imunoconjugados/imunologia , Imunoconjugados/farmacologia , Neoplasias/imunologia
15.
J Biomed Nanotechnol ; 10(1): 4-16, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24724495

RESUMO

Hyaluronan (HA) is biodegradable, highly biocompatible, and contains derivatizable functional groups along its backbone. This relatively simple, non-branched polysaccharide can target specific cell surface receptors making it an attractive polymeric carrier for targeted delivery of therapeutic agents. This article provides an overview of recent developments involving small molecule and bio-macromolecule conjugates of HA as new generation of human therapeutic agents. Several approaches have been developed to prepare conjugates of HA with small molecule drugs, therapeutic peptides, antibodies, and nucleotides. This article discusses such approaches that can modulate the pharmacokinetic and biodistribution of these therapeutic agents so as to appreciate the design criteria for HA based (bio)conjugates or nanoparticles based on their in vitro assay and in vivo pharmacokinetic study.


Assuntos
Ácido Hialurônico/química , Nanoconjugados/química , Polímeros/química , Analgésicos Opioides/administração & dosagem , Animais , Artralgia/tratamento farmacológico , Reagentes de Ligações Cruzadas/química , Vias de Administração de Medicamentos , Técnicas de Transferência de Genes , Humanos , Nanoconjugados/uso terapêutico
16.
Bioconjug Chem ; 25(3): 510-20, 2014 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-24533768

RESUMO

Antibody-drug conjugates (ADCs) have been proven clinically to be more effective anti-cancer agents than native antibodies. However, the classical conjugation chemistries to prepare ADCs by targeting primary amines or hinge disulfides have a number of shortcomings including heterogeneous product profiles and linkage instability. We have developed a novel site-specific conjugation method by targeting the native glycosylation site on antibodies as an approach to address these limitations. The native glycans on Asn-297 of antibodies were enzymatically remodeled in vitro using galactosyl and sialyltransferases to introduce terminal sialic acids. Periodate oxidation of these sialic acids yielded aldehyde groups which were subsequently used to conjugate aminooxy functionalized cytotoxic agents via oxime ligation. The process has been successfully demonstrated with three antibodies including trastuzumab and two cytotoxic agents. Hydrophobic interaction chromatography and LC-MS analyses revealed the incorporation of ~1.6 cytotoxic agents per antibody molecule, approximating the number of sialic acid residues. These glyco-conjugated ADCs exhibited target-dependent antiproliferative activity toward antigen-positive tumor cells and significantly greater antitumor efficacy than naked antibody in a Her2-positive tumor xenograft model. These findings suggest that enzymatic remodeling combined with oxime ligation of the native glycans of antibodies offers an attractive approach to generate ADCs with well-defined product profiles. The site-specific conjugation approach presented here provides a viable alternative to other methods, which involve a need to either re-engineer the antibody sequence or develop a highly controlled chemical process to ensure reproducible drug loading.


Assuntos
Anticorpos Monoclonais Humanizados/farmacologia , Anticorpos/química , Antineoplásicos/farmacologia , Neoplasias Experimentais/tratamento farmacológico , Animais , Anticorpos Monoclonais Humanizados/química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Glicosilação , Humanos , Camundongos , Camundongos SCID , Estrutura Molecular , Neoplasias Experimentais/patologia , Polissacarídeos/química , Ácidos Siálicos/química , Ácidos Siálicos/metabolismo , Sialiltransferases/química , Sialiltransferases/metabolismo , Relação Estrutura-Atividade , Trastuzumab
17.
Bioconjug Chem ; 24(6): 865-77, 2013 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-23631694

RESUMO

Syntheses and characterization of aminooxy terminated polymers of N-(2-hydroxyproyl) methacrylamide (HPMA) of controlled molecular weight and narrow molecular weight distribution are presented here. Design of a chain transfer agent (CTA) containing N-tert-butoxycarbonyl (t-Boc) protected aminooxy group enabled us to use reversible addition-fragmentation (RAFT) polymerization technique to polymerize the HPMA monomer. An amide bond was utilized to link the aminooxy group and the CTA through a triethylene glycol spacer. As a result, the aminooxy group is linked to the poly(HPMA) backbone through a hydrolytically stable amide bond. By varying the monomer to initiator ratios, polymers with targeted molecular weights were obtained. The molecular weights of the polymers were determined by gel permeation chromatography (GPC) and mass spectrometry (ESI and MALDI-TOF). The t-Boc protecting group was quantitatively removed to generate aminooxy terminated poly(HPMA) macromers. These macromers were converted to rhodamine B terminated poly(HPMA) by reacting N-hydroxysuccinimide (NHS) ester of the dye with the terminal aminooxy group to form a stable alkoxyamide bond. Utility of these dye-labeled polymers as molecular probes was evaluated by fluorescence microscopy by studying their intracellular uptake by renal epithelial cells. These aminooxy terminated poly(HPMA) were also tested as biocompatible carriers to prepare chemoselective bioconjugates of proteins using transferrin (Tf) as the protein. Oxidation of the sialic acid side chains of Tf generated aldehyde functionalized protein that was reacted with aminooxy terminated poly(HPMA), which resulted in protein-polymer bioconjugates carrying oxime linkages. These bioconjugates were characterized by gel electrophoresis and MALDI-TOF mass spectrometry.


Assuntos
Glicoproteínas/química , Metacrilatos/química , Ácidos Polimetacrílicos/química , Eletroforese em Gel de Poliacrilamida , Modelos Moleculares , Estrutura Molecular , Oximas/química , Polimerização , Ácidos Polimetacrílicos/síntese química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
18.
Adv Drug Deliv Rev ; 61(13): 1121-30, 2009 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-19682515

RESUMO

Biologically active synthetic polymers have received considerable scientific interest and attention in recent years for their potential as promising novel therapeutic agents to treat human diseases. Although a significant amount of research has been carried out involving polymer-linked drugs as targeted and sustained release drug delivery systems and prodrugs, examples on bioactive polymers that exhibit intrinsic therapeutic properties are relatively less. Several appealing characteristics of synthetic polymers including high molecular weight, molecular architecture, and controlled polydispersity can all be utilized to discover a new generation of therapies. For example, high molecular weight bioactive polymers can be restricted to gastrointestinal tract, where they can selectively recognize, bind, and remove target disease causing substances from the body. The appealing features of GI tract restriction and stability in biological environment render these polymeric drugs to be devoid of systemic toxicity that are generally associated with small molecule systemic drugs. The present article highlights recent developments in the rational design and synthesis of appropriate functional polymers that have resulted in a number of promising polymer based therapies and biomaterials, including some marketed products.


Assuntos
Sistemas de Liberação de Medicamentos , Desenho de Fármacos , Polímeros/uso terapêutico , Animais , Ensaios Clínicos como Assunto , Humanos , Peso Molecular , Polímeros/efeitos adversos , Polímeros/química
19.
Biomacromolecules ; 6(6): 2946-53, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16283713

RESUMO

Iron overload is a severe clinical condition and can be largely prevented by the use of iron-specific chelating agents. A successful iron chelator needs to be orally active, nontoxic, and selective. In this study, hydrogels containing pendant hydroxamic acid groups have been synthesized as potential nonabsorbed chelators for iron in the gastrointestinal tract. The synthetic method employed to introduce hydroxamic acid groups to polymer chains involved reaction of polymer gels based on N-acryloxysuccinimide, acryloyl chloride, and (2-hydroxyethyl)acrylate monomers with hydroxylamine. These hydroxamic acid-functionalized polymer gels swell favorably in water and effectively sequester iron. In vitro iron-binding properties of these hydrogels were evaluated from their binding isotherms by use of iron(II) alone and in the presence of other competing metal ions. These polymers bind iron over a broad pH range. The iron-binding properties of the polymers were found to depend on the concentration of hydroxamate groups on polymer chains. The in vivo iron-binding efficacy of the polymers was evaluated in rat as the animal model. The polymers prevented an increase in serum hemoglobin and hematocrit levels in the animals, thus suggesting the prevention of systemic absorption of dietary iron from the gastrointestinal tract. The animals also maintained normal body weight during the treatment period, indicating the absence of any apparent toxicity associated with these polymers.


Assuntos
Hidrogéis/química , Ácidos Hidroxâmicos/química , Quelantes de Ferro/química , Ferro/química , Polímeros/toxicidade , Acrilamidas/química , Acrilatos/química , Animais , Quelantes/farmacologia , Terapia por Quelação/métodos , Ésteres , Trato Gastrointestinal/metabolismo , Hematócrito , Hemoglobinas/química , Concentração de Íons de Hidrogênio , Hidroxilamina/química , Íons , Ferro da Dieta/metabolismo , Ligantes , Masculino , Metais , Modelos Químicos , Polímeros/química , Ligação Proteica , Ratos , Ratos Wistar , Estireno/química , Succinimidas/química , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA