Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Med ; 25(2): 229-233, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30664785

RESUMO

Leber congenital amaurosis type 10 is a severe retinal dystrophy caused by mutations in the CEP290 gene1,2. We developed EDIT-101, a candidate genome-editing therapeutic, to remove the aberrant splice donor created by the IVS26 mutation in the CEP290 gene and restore normal CEP290 expression. Key to this therapeutic, we identified a pair of Staphylococcus aureus Cas9 guide RNAs that were highly active and specific to the human CEP290 target sequence. In vitro experiments in human cells and retinal explants demonstrated the molecular mechanism of action and nuclease specificity. Subretinal delivery of EDIT-101 in humanized CEP290 mice showed rapid and sustained CEP290 gene editing. A comparable surrogate non-human primate (NHP) vector also achieved productive editing of the NHP CEP290 gene at levels that met the target therapeutic threshold, and demonstrated the ability of CRISPR/Cas9 to edit somatic primate cells in vivo. These results support further development of EDIT-101 for LCA10 and additional CRISPR-based medicines for other inherited retinal disorders.


Assuntos
Edição de Genes , Amaurose Congênita de Leber/genética , Amaurose Congênita de Leber/fisiopatologia , Animais , Linhagem Celular , Técnicas de Introdução de Genes , Humanos , Camundongos , Primatas , Reprodutibilidade dos Testes , Visão Ocular
2.
BMC Genomics ; 19(1): 212, 2018 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-29562890

RESUMO

BACKGROUND: Understanding the diversity of repair outcomes after introducing a genomic cut is essential for realizing the therapeutic potential of genomic editing technologies. Targeted PCR amplification combined with Next Generation Sequencing (NGS) or enzymatic digestion, while broadly used in the genome editing field, has critical limitations for detecting and quantifying structural variants such as large deletions (greater than approximately 100 base pairs), inversions, and translocations. RESULTS: To overcome these limitations, we have developed a Uni-Directional Targeted Sequencing methodology, UDiTaS, that is quantitative, removes biases associated with variable-length PCR amplification, and can measure structural changes in addition to small insertion and deletion events (indels), all in a single reaction. We have applied UDiTaS to a variety of samples, including those treated with a clinically relevant pair of S. aureus Cas9 single guide RNAs (sgRNAs) targeting CEP290, and a pair of S. pyogenes Cas9 sgRNAs at T-cell relevant loci. In both cases, we have simultaneously measured small and large edits, including inversions and translocations, exemplifying UDiTaS as a valuable tool for the analysis of genome editing outcomes. CONCLUSIONS: UDiTaS is a robust and streamlined sequencing method useful for measuring small indels as well as structural rearrangements, like translocations, in a single reaction. UDiTaS is especially useful for pre-clinical and clinical application of gene editing to measure on- and off-target editing, large and small.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Rearranjo Gênico , Genoma Humano , Mutação INDEL , Osteossarcoma/diagnóstico , Antígenos de Neoplasias/genética , Neoplasias Ósseas/diagnóstico , Neoplasias Ósseas/genética , Proteínas de Ciclo Celular , Células Cultivadas , Proteínas do Citoesqueleto , Genômica/métodos , Humanos , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/genética , Osteossarcoma/genética , Deleção de Sequência , Linfócitos T/metabolismo , Linfócitos T/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA