Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
1.
Int J Biol Sci ; 20(13): 5293-5311, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39430243

RESUMO

Cancer represents one of the diseases with the highest mortality rate worldwide. The burden of cancer continues to increase, not only affecting the health-related quality of life of patients but also causing an elevated global financial impact. The complexity and heterogeneity of cancer pose significant challenges in research and clinical practice, contributing to increase the failure rate of clinical trials for antitumoral drugs. This is partially due to the fact that preclinical models still present important limitations in faithfully recapitulating human tumors to serve as reliable indicators of drug effectiveness. Up to now, research and development strategies employ expensive animal models (including the so-called "humanized mice") that not only raise ethical concerns, but also frequently fail to accurately predict responses to anticancer drugs because they do not faithfully replicate human physiology as well as the patient's tumor microenvironment. On the other side, traditional two-dimensional (2D) cell cultures fail to adequately reproduce the structural organization of tumor and the cellular heterogeneity found in vivo. The growing necessity to develop more accurate cancer models has increasingly emphasized the importance of three-dimensional (3D) in vitro cell cultures, such as cancer-derived spheroids and organoids, as promising alternatives to bridge the gap between 2D and animal models. In this review, we provide a brief overview focusing on 3D in vitro cell cultures as preclinical models capable of properly reproducing the tissue organization, biological composition, and complexity of in vivo tumors in a fine-tuned microenvironment. Despite their limitations, these models collectively enhance our understanding of the mechanisms underlying cancer and may offer the potential for a more reliable assessment of drug efficacy before clinical testing and, consequently, improve therapeutic outcomes for cancer patients.


Assuntos
Neoplasias , Animais , Humanos , Neoplasias/patologia , Técnicas de Cultura de Células/métodos , Técnicas de Cultura de Células em Três Dimensões/métodos , Modelos Animais de Doenças , Camundongos
2.
Cancer Lett ; : 217297, 2024 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-39424260

RESUMO

Long non-coding RNAs (lncRNAs) have emerged as critical regulators of epigenome, modulating gene expression through DNA methylation, histone modification, and/or chromosome remodeling. Dysregulated lncRNAs act as oncogenes or tumor suppressors, driving tumor progression by shaping the cancer epigenome. By interacting with the writers, readers, and erasers of the epigenetic script, lncRNAs induce epigenetic modifications that bring about changes in cancer cell proliferation, apoptosis, epithelial-mesenchymal transition, migration, invasion, metastasis, cancer stemness and chemoresistance. This review analyzes and discusses the multifaceted role of lncRNAs in cancer pathobiology, from cancer genesis and progression through metastasis and therapy resistance. It also explores the therapeutic potential of targeting lncRNAs through innovative diagnostic, prognostic, and therapeutic strategies. Understanding the dynamic interplay between lncRNAs and epigenome is crucial for developing personalized therapeutic strategies, offering new avenues for precision cancer medicine.

4.
Int J Mol Sci ; 25(11)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38891879

RESUMO

One aspect of ovarian tumorigenesis which is still poorly understood is the tumor-stroma interaction, which plays a major role in chemoresistance and tumor progression. Cancer-associated fibroblasts (CAFs), the most abundant stromal cell type in the tumor microenvironment, influence tumor growth, metabolism, metastasis, and response to therapy, making them attractive targets for anti-cancer treatment. Unraveling the mechanisms involved in CAFs activation and maintenance is therefore crucial for the improvement of therapy efficacy. Here, we report that CAFs phenoconversion relies on the glucose-dependent inhibition of autophagy. We show that ovarian cancer cell-conditioning medium induces a metabolic reprogramming towards the CAF-phenotype that requires the autophagy-dependent glycolytic shift. In fact, 2-deoxy-D-glucose (2DG) strongly hampers such phenoconversion and, most importantly, induces the phenoreversion of CAFs into quiescent fibroblasts. Moreover, pharmacological inhibition (by proline) or autophagy gene knockdown (by siBECN1 or siATG7) promotes, while autophagy induction (by either 2DG or rapamycin) counteracts, the metabolic rewiring induced by the ovarian cancer cell secretome. Notably, the nutraceutical resveratrol (RV), known to inhibit glucose metabolism and to induce autophagy, promotes the phenoreversion of CAFs into normal fibroblasts even in the presence of ovarian cancer cell-conditioning medium. Overall, our data support the view of testing autophagy inducers for targeting the tumor-promoting stroma as an adjuvant strategy to improve therapy success rates, especially for tumors with a highly desmoplastic stroma, like ovarian cancer.


Assuntos
Autofagia , Fibroblastos Associados a Câncer , Glucose , Neoplasias Ovarianas , Humanos , Feminino , Autofagia/efeitos dos fármacos , Fibroblastos Associados a Câncer/metabolismo , Fibroblastos Associados a Câncer/efeitos dos fármacos , Fibroblastos Associados a Câncer/patologia , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/tratamento farmacológico , Glucose/metabolismo , Linhagem Celular Tumoral , Microambiente Tumoral/efeitos dos fármacos , Resveratrol/farmacologia , Meios de Cultivo Condicionados/farmacologia , Desoxiglucose/farmacologia , Glicólise/efeitos dos fármacos
5.
Cancer Lett ; 591: 216891, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38642607

RESUMO

Ovarian cancer ranks as a leading cause of mortality among gynecological malignancies, primarily due to the lack of early diagnostic tools, effective targeted therapy, and clear understanding of disease etiology. Previous studies have identified the pivotal role of Lysophosphatidic acid (LPA)-signaling in ovarian cancer pathobiology. Our earlier transcriptomic analysis identified Urothelial Carcinoma Associated-1 (UCA1) as an LPA-stimulated long non-coding RNA (lncRNA). In this study, we elucidate the tripartite interaction between LPA-signaling, UCA1, and let-7 miRNAs in ovarian cancer progression. Results show that the elevated expression of UCA1 enhances cell proliferation, invasive migration, and therapy resistance in high-grade serous ovarian carcinoma cells, whereas silencing UCA1 reverses these oncogenic phenotypes. UCA1 expression inversely correlates with survival outcomes and therapy response in ovarian cancer clinical samples, underscoring its prognostic significance. Mechanistically, UCA1 sequesters let-7 miRNAs, effectively neutralizing their tumor-suppressive functions involving key oncogenes such as Ras and c-Myc. More significantly, intratumoral delivery of UCA1-specific siRNAs inhibits the growth of cisplatin-refractory ovarian cancer xenografts, demonstrating the therapeutic potential of targeting LPAR-UCA1-let-7 axis in ovarian cancer. Thus, our results identify LPAR-UCA1-let-7 axis as a novel avenue for targeted treatment strategies.


Assuntos
Movimento Celular , Proliferação de Células , Resistencia a Medicamentos Antineoplásicos , Regulação Neoplásica da Expressão Gênica , MicroRNAs , Neoplasias Ovarianas , RNA Longo não Codificante , Feminino , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/tratamento farmacológico , MicroRNAs/genética , MicroRNAs/metabolismo , Animais , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Ensaios Antitumorais Modelo de Xenoenxerto , Transdução de Sinais , Camundongos Nus , Lisofosfolipídeos/metabolismo , Camundongos , Cisplatino/farmacologia , Receptores de Ácidos Lisofosfatídicos/genética , Receptores de Ácidos Lisofosfatídicos/metabolismo
6.
Biomed Opt Express ; 15(4): 2014-2047, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38633082

RESUMO

Optical coherence tomography (OCT) is an ideal imaging technique for noninvasive and longitudinal monitoring of multicellular tumor spheroids (MCTS). However, the internal structure features within MCTS from OCT images are still not fully utilized. In this study, we developed cross-statistical, cross-screening, and composite-hyperparameter feature processing methods in conjunction with 12 machine learning models to assess changes within the MCTS internal structure. Our results indicated that the effective features combined with supervised learning models successfully classify OVCAR-8 MCTS culturing with 5,000 and 50,000 cell numbers, MCTS with pancreatic tumor cells (Panc02-H7) culturing with the ratio of 0%, 33%, 50%, and 67% of fibroblasts, and OVCAR-4 MCTS treated by 2-methoxyestradiol, AZD1208, and R-ketorolac with concentrations of 1, 10, and 25 µM. This approach holds promise for obtaining multi-dimensional physiological and functional evaluations for using OCT and MCTS in anticancer studies.

7.
Cancer Lett ; 578: 216455, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37865160

RESUMO

Ubiquitin-binding associated protein 2 (UBAP2) is reported to promote macropinocytosis and pancreatic adenocarcinoma (PDAC) growth, however, its role in normal pancreatic function remains unknown. We addressed this knowledge gap by generating UBAP2 knockout (U2KO) mice under a pancreas-specific Cre recombinase (Pdx1-Cre). Pancreatic architecture remained intact in U2KO animals, but they demonstrated slight glucose intolerance compared to controls. Upon cerulein challenge to induce pancreatitis, U2KO animals had reduced levels of several pancreatitis-relevant cytokines, amylase and lipase in the serum, reduced tissue damage, and lessened neutrophil infiltration into the pancreatic tissue. Mechanistically, cerulein-challenged U2KO animals revealed reduced NF-κB activation compared to controls. In vitro promoter binding studies confirmed the reduction of NF-κB binding to its target molecules supporting UBAP2 as a new regulator of inflammation in pancreatitis and may be exploited as a therapeutic target in future to inhibit pancreatitis.


Assuntos
Adenocarcinoma , Neoplasias Pancreáticas , Pancreatite , Camundongos , Animais , Ceruletídeo/efeitos adversos , NF-kappa B/metabolismo , Adenocarcinoma/patologia , Neoplasias Pancreáticas/induzido quimicamente , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/prevenção & controle , Pancreatite/induzido quimicamente , Pancreatite/genética , Pancreatite/prevenção & controle , Pâncreas/patologia , Inflamação/induzido quimicamente , Inflamação/genética , Inflamação/metabolismo , Glucose/metabolismo , Doença Aguda
8.
Metabolites ; 13(5)2023 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-37233659

RESUMO

Peritoneal cancers present significant clinical challenges with poor prognosis. Understanding the role of cancer cell metabolism and cancer-promoting metabolites in peritoneal cancers can provide new insights into the mechanisms that drive tumor progression and can identify novel therapeutic targets and biomarkers for early detection, prognosis, and treatment response. Cancer cells dynamically reprogram their metabolism to facilitate tumor growth and overcome metabolic stress, with cancer-promoting metabolites such as kynurenines, lactate, and sphingosine-1-phosphate promoting cell proliferation, angiogenesis, and immune evasion. Targeting cancer-promoting metabolites could also lead to the development of effective combinatorial and adjuvant therapies involving metabolic inhibitors for the treatment of peritoneal cancers. With the observed metabolomic heterogeneity in cancer patients, defining peritoneal cancer metabolome and cancer-promoting metabolites holds great promise for improving outcomes for patients with peritoneal tumors and advancing the field of precision cancer medicine. This review provides an overview of the metabolic signatures of peritoneal cancer cells, explores the role of cancer-promoting metabolites as potential therapeutic targets, and discusses the implications for advancing precision cancer medicine in peritoneal cancers.

9.
IEEE Trans Biomed Eng ; 70(6): 1891-1901, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37015385

RESUMO

OBJECTIVE: Multicellular tumor spheroids (MCTs) are indispensable models for evaluating drug efficacy for precision cancer therapeutic strategies as well as for repurposing FDA-approved drugs for ovarian cancer. However, current imaging techniques cannot provide effective monitoring of pathological responses due to shallow penetration and experimentally operative destruction. We plan to utilize a noninvasive optical imaging tool to achieve in vivo longitudinal monitoring of the growth of MCTs and therapeutic responses to repurpose three FDA-approved drugs for ovarian cancer therapy. METHODS: A swept-source optical coherence tomography (SS-OCT) system was used to monitor the volume growth of MCTs over 11 days. Three inhibitors of 2-Methoxyestradiol (2-ME), AZD1208, and R-Ketorolac (R-keto) with concentrations of 1, 10, and 25 µM were employed to treat ovarian MCTs on day 5. Three-dimensional (3D), intrinsic optical attenuation contrast, and degree of uniformity were applied to analyze the therapeutic effect of these inhibitors on ovarian MCTs. RESULTS: We found that 2-ME, AZD1208, and R-keto with concentration of 10 and 25 µM significantly inhibited the volume growth of ovarian MCTs. There was no effect to necrotic tissues from all concentrations of 2-ME, AZD1208, and R-keto inhibitors from our OCT results. 2-ME and AZD1208 inhibited the growth of high uniformity tissues within MCTs and higher concentrations provided more significant inhibitory effects. CONCLUSION: Our results indicated that OCT was capable and reliable to monitor the therapeutic effect of inhibitors to ovarian MCTs and it can be used for the rapid characterization of novel therapeutics for ovarian cancers in the future.


Assuntos
Reposicionamento de Medicamentos , Neoplasias Ovarianas , Humanos , Feminino , Tomografia de Coerência Óptica/métodos , Mercaptoetanol/uso terapêutico , Neoplasias Ovarianas/diagnóstico por imagem , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/patologia
10.
Int J Mol Sci ; 24(2)2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36675246

RESUMO

Cancer cells drive the glycolytic process towards the fermentation of pyruvate into lactate even in the presence of oxygen and functioning mitochondria, a phenomenon known as the "Warburg effect". Although not energetically efficient, glycolysis allows the cancer cell to synthesize the metabolites needed for cell duplication. Autophagy, a macromolecular degradation process, limits cell mass accumulation and opposes to cell proliferation as well as to cell migration. Cancer cells corrupt cancer-associated fibroblasts to release pro-inflammatory cytokines, which in turn promote glycolysis and support the metastatic dissemination of cancer cells. In mimicking in vitro this condition, we show that IL-6 promotes ovarian cancer cell migration only in the presence of glycolysis. The nutraceutical resveratrol (RV) counteracts glucose uptake and metabolism, reduces the production of reactive oxygen species consequent to excessive glycolysis, rescues the mitochondrial functional activity, and stimulates autophagy. Consistently, the lack of glucose as well as its metabolically inert analogue 2-deoxy-D-glucose (2-DG), which inhibits hexokinase 2 (HK2), trigger autophagy through mTOR inhibition, and prevents IL-6-induced cell migration. Of clinical relevance, bioinformatic analysis of The Cancer Genome Atlas dataset revealed that ovarian cancer patients bearing mutated TP53 with low expression of glycolytic markers and IL-6 receptor, together with markers of active autophagy, display a longer overall survival and are more responsive to platinum therapy. Taken together, our findings demonstrate that RV can counteract IL-6-promoted ovarian cancer progression by rescuing glycolysis-mediated inhibition of autophagy and support the view that targeting Warburg metabolism can be an effective strategy to limit the risk for cancer metastasis.


Assuntos
Interleucina-6 , Neoplasias Ovarianas , Humanos , Feminino , Resveratrol/farmacologia , Resveratrol/uso terapêutico , Interleucina-6/metabolismo , Linhagem Celular Tumoral , Neoplasias Ovarianas/metabolismo , Glicólise , Autofagia
11.
Cells ; 11(16)2022 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-36010595

RESUMO

The cellular signaling network involves co-ordinated regulation of numerous signaling molecules that aid the maintenance of cellular as well as organismal homeostasis. Aberrant signaling plays a major role in the pathophysiology of many diseases. Recent studies have unraveled the superfamily of long non-coding RNAs (lncRNAs) as critical signaling nodes in diverse signaling networks. Defective signaling by lncRNAs is emerging as a causative factor underlying the pathophysiology of many diseases. LncRNAs have been shown to be involved in the multiplexed regulation of diverse pathways through both genetic and epigenetic mechanisms. They can serve as decoys, guides, scaffolds, and effector molecules to regulate cell signaling. In comparison with the other classes of RNAs, lncRNAs possess unique structural modifications that contribute to their diversity in modes of action within the nucleus and cytoplasm. In this review, we summarize the structure and function of lncRNAs as well as their vivid mechanisms of action. Further, we provide insights into the role of lncRNAs in the pathogenesis of four major disease paradigms, namely cardiovascular diseases, neurological disorders, cancers, and the metabolic disease, diabetes mellitus. This review serves as a succinct treatise that could open windows to investigate the role of lncRNAs as novel therapeutic targets.


Assuntos
RNA Longo não Codificante , Núcleo Celular , Epigênese Genética , Homeostase , RNA Longo não Codificante/genética , Transdução de Sinais
12.
Cancer Lett ; 542: 215735, 2022 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-35569696

RESUMO

Ovarian cancer is mostly diagnosed at advantaged stages due to the lack of early diagnostic biomarkers. The common metastasis pattern is characterized by peritoneal dissemination with a formation of malignant ascites. Extracellular vesicles (EVs) are emerging as promising clinical biomarkers in liquid biopsy. Here, we aimed to investigate robust liquid biopsy-based EV miRNA biomarkers for ovarian cancer diagnosis and metastasis regulation. EVs were isolated from malignant ascites and plasma of ovarian cancer patients as well as the benign control counterparts of patients with benign gynecologic diseases. EV small RNA sequencing identified a panel of eight miRNAs (miR-1246, miR-1290, miR-483, miR-429, miR-34b-3p, miR-34c-5p, miR-145-5p, miR-449a) based on dysregulated miRNAs overlapped in the ascites and plasma subset. The ovarian cancer EV miRNA (OCEM) signature developed based on these eight miRNAs demonstrated high diagnostic accuracy in our in-house dataset and multiple public datasets across diverse clinical samples (blood, tissue and urine). In addition, malignant ascites-derived EVs could significantly facilitate the aggressive property of ovarian cancer cells and boost the growth of ascites-derived organoids. Notably, miR-1246 and miR-1290 shuttled in malignant ascites-derived EVs were identified to promote the invasion and migration of ovarian cancer cells through regulating a common target RORα.


Assuntos
Vesículas Extracelulares , MicroRNAs , Neoplasias Ovarianas , Ascite/diagnóstico , Ascite/genética , Biomarcadores Tumorais/genética , Carcinoma Epitelial do Ovário/diagnóstico , Carcinoma Epitelial do Ovário/genética , Vesículas Extracelulares/genética , Vesículas Extracelulares/patologia , Feminino , Humanos , Neoplasias Ovarianas/diagnóstico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia
13.
Cancers (Basel) ; 14(9)2022 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-35565270

RESUMO

Tumor dormancy is the extended period during which patients are asymptomatic before recurrence, and it represents a difficult phenomenon to target pharmacologically. The relapse of tumors, for instance arising from the interruption of dormant metastases, is frequently observed in ovarian cancer patients and determines poor survival. Inflammatory cytokines present in the tumor microenvironment likely contribute to such events. Cancer cell dormancy and autophagy are interconnected at the molecular level through ARH-I (DIRAS3) and BECLIN-1, two tumor suppressors often dysregulated in ovarian cancers. IL-6 disrupts autophagy in ovarian cancer cells via miRNAs downregulation of ARH-I, an effect contrasted by the nutraceutical protein restriction mimetic resveratrol (RV). By using three ovarian cancer cell lines with different genetic background in 2D and 3D models, the latter mimicking the growth of peritoneal metastases, we show that RV keeps the cancer cells in a dormant-like quiescent state contrasting the IL-6 growth-promoting activity. Mechanistically, this effect is mediated by BECLIN-1-dependent autophagy and relies on the availability of ARH-I. We also show that ARH-I (DIRAS3) is a bona fide target of miR-1305, a novel oncomiRNA upregulated by IL-6 and downregulated by RV. Clinically relevant, bioinformatic analysis of a transcriptomic database showed that the high expression of DIRAS3 and MAP1LC3B mRNAs together with that of CDKN1A, directing a cellular dormant phenotype, predicts better overall survival in ovarian cancer patients, and this correlates with MIR1305 downregulation. The possibility of maintaining a permanent cell dormancy in ovarian cancer by the chronic administration of RV should be considered as a therapeutic option to prevent the "awakening" of cancer cells in response to a permissive microenvironment, thus limiting the risk of tumor relapse and metastasis.

14.
Biomark Insights ; 17: 11772719221088404, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35370397

RESUMO

Clinical management of gynecological cancer begins by optimal debulking with first-line platinum-based chemotherapy. However, in ~80% patients, ovarian cancer will recur and is lethal. Prognostic gene signature panel identifying platinum-resistance enables better patient stratification for precision therapy. Retrospectively collected serum from 11 "poor" (<6 months progression free interval [PFI]) and 22 "favorable" (>24 months PFI) prognosis patients, were evaluated using circulating cell-free DNA (cfDNA). DNA from both groups showed 50 to 10 000 bp fragments. Pairwise analysis of sequenced cfDNA from patients showed that gene dosages were higher for 29 genes and lower for 64 genes in poor than favorable prognosis patients. Gene ontology analysis of higher dose genes predominantly grouped into cytoskeletal proteins, while lower dose genes, as hydrolases and receptors. Higher dosage genes searched for cancer-relatedness in Reactome database indicated 15 genes were referenced with cancer. Among them 3 genes, TGFBR2, ZMIZ2, and NRG2, were interacting with more than 4 cancer-associated genes. Protein expression analysis of tumor samples indicated that TGFBR2 was downregulated and ZMIZ2 was upregulated in poor prognosis patients. Our results indicate that the cfDNA gene dosage combined with protein expression in tumor samples can serve as gene signature panel for prognosis determination amongst ovarian cancer patients.

15.
Biomedicines ; 9(12)2021 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-34944743

RESUMO

Focusing on defining metabolite-based inter-tumoral heterogeneity in ovarian cancer, we investigated the metabolic diversity of a panel of high-grade serous ovarian carcinoma (HGSOC) cell-lines using a metabolomics platform that interrogate 731 compounds. Metabolic fingerprinting followed by 2-dimensional and 3-dimensional principal component analysis established the heterogeneity of the HGSOC cells by clustering them into five distinct metabolic groups compared to the fallopian tube epithelial cell line control. An overall increase in the metabolites associated with aerobic glycolysis and phospholipid metabolism were observed in the majority of the cancer cells. A preponderant increase in the levels of metabolites involved in trans-sulphuration and glutathione synthesis was also observed. More significantly, subsets of HGSOC cells showed an increase in the levels of 5-Hydroxytryptamine, γ-aminobutyrate, or glutamate. Additionally, 5-hydroxytryptamin synthesis inhibitor as well as antagonists of γ-aminobutyrate and glutamate receptors prohibited the proliferation of HGSOC cells, pointing to their potential roles as oncometabolites and ligands for receptor-mediated autocrine signaling in cancer cells. Consistent with this role, 5-Hydroxytryptamine synthesis inhibitor as well as receptor antagonists of γ-aminobutyrate and Glutamate-receptors inhibited the proliferation of HGSOC cells. These antagonists also inhibited the three-dimensional spheroid growth of TYKNU cells, a representative HGSOC cell-line. These results identify 5-HT, GABA, and Glutamate as putative oncometabolites in ovarian cancer metabolic sub-type and point to them as therapeutic targets in a metabolomic fingerprinting-based therapeutic strategy.

16.
Cells ; 10(11)2021 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-34831435

RESUMO

Background: Ovarian cancer progression and invasiveness are promoted by a range of soluble factors released by cancer cells and stromal cells within the tumor microenvironment. Our previous studies demonstrated that resveratrol (RV), a nutraceutical and caloric restriction mimetic with tumor-suppressive properties, counteracts cancer cell motility induced by stromal IL-6 by upregulating autophagy. Lysophosphatidic acid (LPA), a bioactive phospholipid that shows elevated levels in the tumor microenvironment and the ascites of ovarian cancers, stimulates the growth and tissue invasion of cancer cells. Whether LPA elicits these effects by inhibiting autophagy and through which pathway and whether RV can counteract the same remain obscure. Aims: To investigate the molecular pathways involved in LPA-induced ovarian cancer malignancy, particularly focusing on the role of autophagy, and the ability of RV to counteract LPA activity. Results: LPA stimulated while RV inhibited ovarian cancer cell migration. Transcriptomic and bioinformatic analyses showed an opposite regulation by LPA and RV of genes linked to epithelial-to-mesenchymal transition (EMT) and autophagy with involvement of the PI3K-AKT, JAK-STAT and Hedgehog (Hh) pathways. LPA upregulated the Hh and EMT members GLI1, BMI-1, SNAIL-1 and TWIST1 and inhibited autophagy, while RV did the opposite. Similar to the inhibitors of the Hh pathway, RV inhibited LPA-induced cancer cell migration and 3D growth of ovarian cancer cells. BMI-1 silencing prevented LPA-induced EMT, restored autophagy and hampered cell migration, resembling the effects of RV. TCGA data analyses indicated that patients with low expression of Hh/EMT-related genes together with active autophagy flux tended to have a better prognosis and this correlates with a more effective response to platinum therapy. In in vitro 3D spheroids, LPA upregulated BMI-1, downregulated autophagy and inhibited platinum toxicity while RV and Hh inhibitors restored autophagy and favored BAX-mediated cell death in response to platinum. Conclusions: By inhibiting the Hh pathway and restoration of autophagy, RV counteracts LPA-induced malignancy, supporting its inclusion in the therapy of ovarian cancer for limiting metastasis and chemoresistance.


Assuntos
Autofagia , Movimento Celular , Resistencia a Medicamentos Antineoplásicos , Proteínas Hedgehog/metabolismo , Neoplasias Ovarianas/patologia , Platina/farmacologia , Resveratrol/farmacologia , Autofagia/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Transição Epitelial-Mesenquimal/genética , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Inativação Gênica/efeitos dos fármacos , Proteínas Hedgehog/genética , Humanos , Lisofosfolipídeos , Neoplasias Ovarianas/genética , Complexo Repressor Polycomb 1/metabolismo , Prognóstico , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Transcriptoma/genética , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética
17.
Oncol Lett ; 22(4): 719, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34429759

RESUMO

With the focus on defining the oncogenic network stimulated by lysophosphatidic acid (LPA) in ovarian cancer, the present study sought to interrogate the oncotranscriptome regulated by the LPA-mediated signaling pathway. LPA, LPA-receptor (LPAR) and LPAR-activated G protein 12 α-subunit, encoded by G protein subunit α 12 (GNA12), all serve an important role in ovarian cancer progression. While the general signaling mechanism regulated by LPA/LPAR/GNA12 has previously been characterized, the global transcriptomic network regulated by GNA12 in ovarian cancer pathophysiology remains largely unknown. To define the LPA/LPAR/GNA12-orchestrated oncogenic networks in ovarian cancer, transcriptomic and bioinformatical analyses were conducted using SKOV3 cells, in which the expression of GNA12 was silenced. Array analysis was performed in Agilent SurePrint G3 Human Comparative Genomic Hybridization 8×60 microarray platform. The array results were validated using Kuramochi cells. Gene and functional enrichment analyses were performed using Database for Annotation, Visualization and Integrated Discovery, Search Tool for Retrieval of Interacting Genes and Cytoscape algorithms. The results indicated a paradigm in which GNA12 drove ovarian cancer progression by upregulating a pro-tumorigenic network with AKT1, VEGFA, TGFB1, BCL2L1, STAT3, insulin-like growth factor 1 and growth hormone releasing hormone as critical hub and/or bottleneck nodes. Moreover, GNA12 downregulated a growth-suppressive network involving proteasome 20S subunit (PSM) ß6, PSM α6, PSM ATPase 5, ubiquitin conjugating enzyme E2 E1, PSM non-ATPase 10, NDUFA4 mitochondrial complex-associated, NADH:ubiquinone oxidoreductase subunit B8 and anaphase promoting complex subunit 1 as hub or bottleneck nodes. In addition to providing novel insights into the LPA/LPAR/GNA12-regulated oncogenic networks in ovarian cancer, the present study identified several potential nodes in this network that could be assessed for targeted therapy.

18.
Biomolecules ; 11(8)2021 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-34439774

RESUMO

The interaction of immune checkpoint molecules in the tumor microenvironment reduces the anti-tumor immune response by suppressing the recognition of T cells to tumor cells. Immune checkpoint inhibitor (ICI) therapy is emerging as a promising therapeutic option for cancer treatment. However, modulating the immune system with ICIs still faces obstacles with severe immunogenic side effects and a lack of response against many cancer types. Plant-derived natural compounds offer regulation on various signaling cascades and have been applied for the treatment of multiple diseases, including cancer. Accumulated evidence provides the possibility of efficacy of phytochemicals in combinational with other therapeutic agents of ICIs, effectively modulating immune checkpoint-related signaling molecules. Recently, several phytochemicals have been reported to show the modulatory effects of immune checkpoints in various cancers in in vivo or in vitro models. This review summarizes druggable immune checkpoints and their regulatory factors. In addition, phytochemicals that are capable of suppressing PD-1/PD-L1 binding, the best-studied target of ICI therapy, were comprehensively summarized and classified according to chemical structure subgroups. It may help extend further research on phytochemicals as candidates of combinational adjuvants. Future clinical trials may validate the synergetic effects of preclinically investigated phytochemicals with ICI therapy.


Assuntos
Inibidores de Checkpoint Imunológico/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/imunologia , Compostos Fitoquímicos/química , Receptor de Morte Celular Programada 1/metabolismo , Animais , Antígenos CD/metabolismo , Antineoplásicos/farmacologia , Antígenos B7/metabolismo , Antígeno B7-H1/metabolismo , Antígeno CTLA-4/metabolismo , Camptotecina/química , Diterpenos/química , Compostos de Epóxi/química , Flavonoides/química , Receptor Celular 2 do Vírus da Hepatite A/metabolismo , Humanos , Imunoterapia , Isotiocianatos/química , Camundongos , Fenantrenos/química , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/farmacologia , Receptores Imunológicos/metabolismo , Saponinas/química , Sulfóxidos/química , Terpenos/química , Microambiente Tumoral/efeitos dos fármacos , Proteína do Gene 3 de Ativação de Linfócitos
19.
Biomolecules ; 11(8)2021 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-34439877

RESUMO

Increased expression of GNAi2, which encodes the α-subunit of G-protein i2, has been correlated with the late-stage progression of ovarian cancer. GNAi2, also referred to as the proto-oncogene gip2, transduces signals from lysophosphatidic acid (LPA)-activated LPA-receptors to oncogenic cellular responses in ovarian cancer cells. To identify the oncogenic program activated by gip2, we carried out micro-array-based transcriptomic and bioinformatic analyses using the ovarian cancer cell-line SKOV3, in which the expression of GNAi2/gip2 was silenced by specific shRNA. A cut-off value of 5-fold change in gene expression (p < 0.05) indicated that a total of 264 genes were dependent upon gip2-expression with 136 genes coding for functional proteins. Functional annotation of the transcriptome indicated the hitherto unknown role of gip2 in stimulating the expression of oncogenic/growth-promoting genes such as KDR/VEGFR2, CCL20, and VIP. The array results were further validated in a panel of High-Grade Serous Ovarian Carcinoma (HGSOC) cell lines that included Kuramochi, OVCAR3, and OVCAR8 cells. Gene set enrichment analyses using DAVID, STRING, and Cytoscape applications indicated the potential role of the gip2-stimulated transcriptomic network involved in the upregulation of cell proliferation, adhesion, migration, cellular metabolism, and therapy resistance. The results unravel a multi-modular network in which the hub and bottleneck nodes are defined by ACKR3/CXCR7, IL6, VEGFA, CYCS, COX5B, UQCRC1, UQCRFS1, and FYN. The identification of these genes as the critical nodes in GNAi2/gip2 orchestrated onco-transcriptome establishes their role in ovarian cancer pathophysiology. In addition, these results also point to these nodes as potential targets for novel therapeutic strategies.


Assuntos
Carcinoma Epitelial do Ovário/metabolismo , Subunidade alfa Gi2 de Proteína de Ligação ao GTP/metabolismo , Regulação Neoplásica da Expressão Gênica , Neoplasias Ovarianas/metabolismo , Linhagem Celular Tumoral , Feminino , Humanos , Proto-Oncogene Mas , Transcriptoma
20.
Biomedicines ; 9(2)2021 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-33670664

RESUMO

BACKGROUND: BRCA1, BECN1 and TP53 are three tumor suppressor genes located on chromosome 17 and frequently found deleted, silenced, or mutated in many cancers. These genes are involved in autophagy, apoptosis, and drug resistance in ovarian cancer. Haploinsufficiency or loss-of-function of either TP53, BRCA1 or BECN1 correlates with enhanced predisposition to cancer development and progression, and chemoresistance. Expectedly, the combined altered expression of these three tumor suppressor genes worsens the prognosis of ovarian cancer patients. However, whether such a genotypic pattern indeed affects the chemo-responsiveness to standard chemotherapy thus worsening patients' survival has not been validated in a large cohort of ovarian cancer patients. AIM: We interrogated datasets from the TCGA database to analyze how the expression of these three tumor suppressor genes impacts on the clinical response to platinum-based chemotherapy thus affecting the survival of ovarian cancer patients. RESULTS AND CONCLUSION: Compared to EOC with homozygous expression of BECN1 and BRCA1, tumors expressing low mRNA expression of these two tumor suppressor genes (either because of shallow (monoallelic) co-deletion or of promoter hypermethylation), showed higher sensitivity to platinum-based therapies and were associated with a better prognosis of ovarian cancer-bearing patients. This outcome was independent of TP53 status, though it was statistically more significant in the cohort of patients with mutated TP53. Thus, sensitivity to platinum therapy (and probably to other chemotherapeutics) correlates with low expression of a combination of critical tumor suppressor genes. Our study highlights the importance of thoroughly assessing the genetic lesions of the most frequently mutated genes to stratify the patients in view of a personalized therapy. More importantly, the present findings suggest that targeting the function of both BECN1 and BRCA1 could be a strategy to restore chemosensitivity in refractory tumors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA