Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cell Biochem Biophys ; 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39042185

RESUMO

Chronic hepatitis caused by the hepatitis C virus (HCV) is closely linked with the advancement of liver disease. The research hypothesis suggests that the NS5B enzyme (non-structural 5B protein) of HCV plays a pivotal role in facilitating viral replication within host cells. Hence, the objective of the present investigation is to identify the binding interactions between the structurally diverse phytotherapeutics and those of the catalytic residue of the target NS5B polymerase protein. Results of our docking simulations reveal that compounds such as arjunolic acid, sesamin, arjungenin, astragalin, piperic acid, piperidine, piperine, acalyphin, adhatodine, amyrin, anisotine, apigenin, cuminaldehyde, and curcumin exhibit a maximum of three interactions with the catalytic residues (Asp 220, Asp 318, and Asp 319) present on the Hepatitis C virus NS5B polymerase of HCV. Molecular dynamic simulation, particularly focusing on the best binding lead compound, arjunolic acid (-8.78 kcal/mol), was further extensively analyzed using RMSD, RMSF, Rg, and SASA techniques. The results of the MD simulation confirm that the NS5B-arjunolic acid complex becomes increasingly stable from 20 to 100 ns. The orientation of both arjunolic acid and sofosbuvir triphosphate (standard) within the active site was investigated through DCCM, PCA, and FEL analysis, indicating highly stable interactions of the lead arjunolic acid with the catalytic region of the NS5B enzyme. The findings of our current investigation suggest that bioactive therapeutics like arjunolic acid could serve as promising candidates for limiting the NS5B polymerase activity of the hepatitis C virus, offering hope for the future of HCV treatment.

2.
Reprod Sci ; 31(6): 1508-1520, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38228976

RESUMO

Polycystic ovary syndrome (PCOS) is a multifaceted disease with an intricate etiology affecting reproductive-aged women. Despite attempts to unravel the pathophysiology, the molecular mechanism of PCOS remains unknown. There are no effective or suitable therapeutic strategies available to ameliorate PCOS; however, the symptoms can be managed. In recent years, a strong association has been found between the gut microbiome and PCOS, leading to the formulation of novel ideas on the genesis and pathological processes of PCOS. Further, gut microbiome dysbiosis involving microbial metabolites may trigger PCOS symptoms via many mechanistic pathways including those associated with carbohydrates, short-chain fatty acids, lipopolysaccharides, bile acids, and gut-brain axis. We present the mechanistic pathways of PCOS-related microbial metabolites and therapeutic opportunities available to treat PCOS, such as prebiotics, probiotics, and fecal microbiota therapy. In addition, the current review highlights the emerging treatment strategies available to alleviate the symptoms of PCOS.


Assuntos
Disbiose , Microbioma Gastrointestinal , Síndrome do Ovário Policístico , Probióticos , Síndrome do Ovário Policístico/metabolismo , Síndrome do Ovário Policístico/microbiologia , Síndrome do Ovário Policístico/terapia , Humanos , Feminino , Microbioma Gastrointestinal/fisiologia , Disbiose/terapia , Probióticos/uso terapêutico , Probióticos/administração & dosagem , Prebióticos/administração & dosagem , Eixo Encéfalo-Intestino/fisiologia , Transplante de Microbiota Fecal , Animais
3.
J Biomol Struct Dyn ; 42(2): 710-724, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37021476

RESUMO

Candida species have established themselves as a major source of nosocomial infections. Increased expression of secreted aspartyl proteinases (SAP5) plays a crucial role in the pathogenesis of Candida species. Phytotherapeutics continue to serve as a viable resource for discovering novel antifungal agents. Hence the main aim of the present investigation is to explore the possible inhibitory role of the selected bioactive molecules against the SAP5 enzyme of C. albicans using in silico approach. Molecular docking and dynamic simulations were utilized to predict the binding affinity of the lead molecules using the AutoDock and Gromacs in-silico screening tools. Results of preliminary docking simulations show that the compounds hesperidin, vitexin, berberine, adhatodine, piperine, and chlorogenic acid exhibit significant interactions with the core catalytic residues of the target protein. The best binding ligands (hesperidin, vitexin, fluconazole) were subjected to molecular dynamics (MD) and essential dynamics of the trajectories. Results of the MD simulation confirm that the ligand-protein complexes became more stable from 20 ns until 100 ns. The calculated residue-level contributions to the interaction energy along a steady simulation trajectory of all three hits (hesperidin (-132.720 kJ/mol), vitexin (-83.963 kJ/mol) and fluconazole (-98.864 kJ/mol)) ensure greater stability of the leads near the catalytic region. Essential dynamics of PCA and DCCM analysis signifies that the binding of hesperidin and vitexin created a more structurally stable environment in the protein target. The overall outcomes of this study clearly emphasize that the bioactive therapeutics found in medicinal herbs may have remarkable scope in managing Candida infection.


Assuntos
Ácido Aspártico Proteases , Hesperidina , Candida albicans , Fluconazol/farmacologia , Simulação de Dinâmica Molecular , Simulação de Acoplamento Molecular , Candida , Antifúngicos/farmacologia , Antifúngicos/química
4.
Transl Res ; 265: 71-87, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-37952771

RESUMO

Diabetic kidney disease (DKD) is a major microvascular complication of diabetes mellitus (DM) that poses a serious risk as it can lead to end-stage renal disease (ESRD). DKD is linked to changes in the diversity, composition, and functionality of the microbiota present in the gastrointestinal tract. The interplay between the gut microbiota and the host organism is primarily facilitated by metabolites generated by microbial metabolic processes from both dietary substrates and endogenous host compounds. The production of numerous metabolites by the gut microbiota is a crucial factor in the pathogenesis of DKD. However, a comprehensive understanding of the precise mechanisms by which gut microbiota and its metabolites contribute to the onset and progression of DKD remains incomplete. This review will provide a summary of the current scenario of metabolites in DKD and the impact of these metabolites on DKD progression. We will discuss in detail the primary and gut-derived metabolites in DKD, and the mechanisms of the metabolites involved in DKD progression. Further, we will address the importance of metabolomics in helping identify potential DKD markers. Furthermore, the possible therapeutic interventions and research gaps will be highlighted.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Falência Renal Crônica , Humanos , Nefropatias Diabéticas/metabolismo , Biomarcadores , Metabolômica
5.
Cureus ; 15(10): e46909, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37841989

RESUMO

Background Ridge preservation became a crucial dental health issue and strategy to keep away from ridge defacement after post-tooth loss. The recent scientific evolution of platelet-rich fibrin (PRF) comprises a parenteral formulation of PRF. The combined allograft for socket preservation gives benefits. In this study, bone allografts, demineralized freeze-dried bone allografts (DFDBA) and freeze-dried bone allografts (FDBA) are used in a 30:70 ratio alone or in combination with injectable PRF (I-PRF) for socket preservation. Methods This study is a radiographic and histological examination conducted on 60 participants aged between 19-65 years. Participating patients agreed voluntarily that they would not bear any fixed prosthesis for the next nine months and plan for implanted teeth placement, including multi-rooted mandibular molars denticles. Both groups received atraumatic extraction; then, the socket was preserved with bone allograft alone in the control group and bone allograft mixed with I-PRF, forming sticky bone, in the experimental group. Clinical, radiological, and histological assessments were taken at the inception stage, three months, six months, and nine months. A multivariate regression model and a generalized estimating equation (GEE) model were used to analyse the effects of these changes on outcomes. Results In all the parameters, the test group indicated a good amount of bone growth with increasing intervals of time for bone height radiographically with statistically significant difference present (p<0.05) and histologically after nine months when socket site grafted with bone graft in combination with I-PRF. Conclusion This study's results demonstrated that I-PRF possesses the potential to regenerate and heal in the tooth-extracted socket. This study further recommends the implementation of I-PRF in safeguarding and conserving the raised rim of the tooth. Future research should take place on the osteogenic capability of I-PRF in more comprehensive ridge accession surgical procedures and additional expanding and improving capacities in periodontal reconstruction.

6.
Front Pharmacol ; 14: 1096905, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36817128

RESUMO

Background: Dodonaea viscosa Jacq. (D. viscosa) belongs to the family of Sapindaceae, commonly known as "Sinatha," and is used as a traditional medicine for treating wounds due to its high flavonoids content. However, to date there is no experimental evidence on its flavonoid-rich fraction of D. viscosa formulation as an agent for healing wounds. Objective: The present study aimed to evaluate the wound healing effect of ethyl acetate fraction of D. viscosa leaves on dermal wounds. Methods: The ethyl acetate fraction was produced from a water-ethanol extract of D. viscosa leaves and was quantitatively evaluated using the HPLC technique. The in-vivo wound healing ability of the ethyl acetate fraction of D. viscosa ointment (DVFO, 2.5%w/w and 5%w/w) was investigated in Sprague-Dawley rats utilizing an incision and excision paradigm with povidone-iodine ointment (5% w/w) as a control. The percentage of wound closure, hydroxyproline and hexosamine concentrations, tensile strength and epithelialization duration were measured. Subsequently, histopathology analysis of skin samples as well as western blots were performed for collagen type 3 (COL3A1), basic fibroblast growth factor (bFGF) and vascular endothelial growth factor (VEGF). Results: The ethyl acetate fraction of D. viscosa revealed flavonoids with high concentrations of quercetin (6.46% w/w) and kaempferol (0.132% w/w). Compared to the control group, the DVFO (2.5% and 5.0% w/w) significantly accelerated wound healing in both models, as demonstrated by quicker wound contraction, epithelialization, elevated hydroxyproline levels and increased tensile strength. Histopathological investigations also revealed that DVFO treatment improved wound healing by re-epithelialization, collagen formation and vascularization of damaged skin samples. Western blot analysis further demonstrated an up-regulation of COL3A, vascular endothelial growth factor and bFGF protein in wound granulation tissue of the DVFO-treated group (p < 0.01). Conclusion: It is concluded that flavonoid-rich D. viscosa ethyl acetate fraction promotes wound healing by up-regulating the expressions of COL3A, VEGF and bFGF protein in wound granulation tissue. However, extensive clinical and pre-clinical research on the flavonoid-rich fraction of D. viscosa is needed to determine its significant impact in the healing of human wounds.

7.
Appl Biochem Biotechnol ; 195(3): 1983-1998, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36401722

RESUMO

In recent years, candidiasis attains major clinical importance due to its unique pathogenic strategy, which distinguishes it from other nosocomial infections. Secreted aspartyl proteinases (SAPs) is a hydrolytic enzyme secreted by Candida species that mediate versatile biological activity including hyphal formation, adherence, biofilm formation, phenotypic adaptation, etc. Emerging clinical evidence strongly suggested that conventional anti-fungal agent's are often prone to high level of resistance upon repeated exposure. Drug repurposing is an ideal strategy that shall impose the additional clinical benefits of the already approved molecules. Hence, through this realistic pathway, the potential of the suitable lead candidates will be explored in order to prolong the life span of existing molecules thereby need for newer therapeutics shall be avoided. The main aim of the present investigation is to determine the enzyme inhibitory potential of certain FDA-approved antibiotics and to validate its efficacy against the virulent enzyme secreted aspartyl proteinase (SAP) of Candida albicans via the AutoDock simulation program. The outcome of in silico dynamic simulations depicts that the drugs such as gentamicin, clindamycin, meropenem, metronidazole, and aztreonam emphasize superior binding affinity in terms of demonstrating considerable interaction with the core catalytic residues (Asp 32, Asp86, Asp 218, Gly220, Thr 221, and Thr 222). Data further indicates that the drug gentamicin exhibited best binding affinity of - 14.16 kcal/mol followed by meropenem (- 9.20 kcal/mol), clindamycin (- 9.00 kcal/mol), ciprofloxacin (- 8.95 kcal/mol), and imipenem (- 8.00 kcal/mol). In conclusion, repurposed antibiotics like gentamicin, clindamycin, meropenem, metronidazole, and aztreonam shall be considered an alternate drug of choice for the clinical management of drug resistant candida infections in the near future.


Assuntos
Ácido Aspártico Proteases , Candidíase , Humanos , Candida albicans/metabolismo , Aztreonam/metabolismo , Clindamicina/metabolismo , Meropeném/metabolismo , Reposicionamento de Medicamentos , Metronidazol , Ácido Aspártico Endopeptidases/metabolismo , Candidíase/microbiologia , Antibacterianos
10.
Nanomedicine ; 29: 102232, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32562860

RESUMO

Healing or reconstruction of critical-sized bone defects is still challenging in orthopaedic practice. In this study, we developed a new approach to control the degradation and improve the bone regeneration of the AZ31 magnesium substrate, fabricated as mesh cage implants. Subsequently, bilayer nanocomposite coating was carried out using polycaprolactone (PCL) and nano-hydroxyapatite (nHA) by dip-coating and electrospinning. Lastly, the healing capacity of the implants was studied in New Zealand White (NZW) rabbit critical-sized femur bone defects. X-ray analysis showed the coated implant group bridged and healed the critical defects 100% during four weeks of post-implantation. Micro-computed tomography (Micro-CT) study showed higher total bone volume (21.10%), trabecular thickness (0.73), and total porosity (85.71%) with bilayer coated implants than uncoated. Our results showed that nanocomposite coated implants controlled the in vivo degradation and improved bioactivity. Hence, the coated implants can be used as a promising bioresorbable implant for critical segmental bone defect repair applications.


Assuntos
Regeneração Óssea/efeitos dos fármacos , Materiais Revestidos Biocompatíveis/farmacologia , Nanoestruturas/química , Próteses e Implantes , Ligas/química , Ligas/farmacologia , Animais , Durapatita/farmacologia , Fêmur/efeitos dos fármacos , Fêmur/crescimento & desenvolvimento , Humanos , Magnésio/química , Magnésio/farmacologia , Nanocompostos/química , Nanocompostos/uso terapêutico , Poliésteres/química , Poliésteres/farmacologia , Coelhos , Microtomografia por Raio-X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA